
Open source vector tile creation for spatial data infrastructure

applications

Wallner Andreas Georg1, Piechl Thomas2, Paulus Gernot1 and Anders Karl-Heinrich1

1 Carinthian University of Applied Science (CUAS) - Spatial Information Management, Villach, Austria
2 Amt der Kärntner Landesregierung, Klagenfurt, Austria

Correspondence: Wallner Andreas Georg (andreasgeorg.wallner@edu.fh-kaernten.ac.at)

Abstract. Accessing geospatial data via the internet is a

common way for data integration. This web mapping

approach often relies on web services like the web map

tile service (WMTS) for accessing maps or the web

feature service (WFS) for accessing vector data. An

alternative way, which combines aspects like the higher

performance through tiling and the usage of vector data is

the usage of tiled vector data. This short paper describes

an approach for the creation of tiled vector data using

standard PostgreSQL, with spatial extension PostGIS,

functionality. For that, custom PostGIS functions are

implemented to select relevant vector data out of the

PostgreSQL database, dynamically generalize/simplify

geometries and transform the data to Mapbox mvt format.

This approach of creating tiled vector data shall be used

for further implementations of web maps for building

more efficient spatial data infrastructures.

Keywords. tiling vector data, generalisation, web

mapping, PostgreSQL

1 Introduction

Online web applications often rely on external spatial data

sources offered through the world wide web (Fu and Sun,

2011). One of the most important services for web

mapping is the traditional Open Geospatial Consortium

(OGC) Web Map Service and OGC Web Map Tile

Service (WMS/WMTS). The WMS is used to offer maps

as images over the internet. Original data is often stored

in vector format. According to the request of a client, the

WMS responds with a pre-calculated geo-referenced

image (Fu and Sun, 2011). Because WMS responds with

one, often bigger image, this can take some time.

Therefore, the WMTS was developed. The idea is to cut

the resulting images into equally sized tiles, and only to

request needed tiles, rather than a whole image (OGC (a),

2010). For vector data, the OGC Web Feature Service

(WFS) allows the request for geographical features via the

internet. WFS serves direct access to fine-grained

geographic information at feature level. The standard

describes operations for discover, query and transfer

geospatial vector data in different formats like for

example GML, JSON, CSV or even shapefile (OGC (b),

2010). The transmission of vector data can take a lot of

time due to the complexity of vector objects (Li et al.,

2017). Therefore, the interest in tiled vector data services

increases, to increase the performance of the data transfer

and to efficiently use vector data for web mapping (OGC,

2018).

1.1 Tiling spatial data

The concept of tiling spatial data is nothing new.

Goodchild (1990) describes general concepts for tiling

large geospatial data to make it more accessible or

manageable. Early implementations are even going back

to the 1970s/80, for example, the implementations of the

US Wildlife Service. Within the “Wetlands Analytical

Mapping System” they organized spatial data in so-called

“geounits” corresponding to one of the United States

Geological Survey (USGS) quadrangle scales, typically

1:24000 (Pywell and Niedzwiadek, 1980). This was years

before the first web-map server implementations. The

idea of tiled data is to split the data into equal areas called

tiles and to only serve needed tiles. Data which is outside

of a client’s view is not so important or sometimes even

might not be used by the user. This technique improved

the usage of geodata over the web immensely (Gaffuri,

2012).

AGILE: GIScience Series, 3, 67, 2022. https://doi.org/10.5194/agile-giss-3-67-2022
Proceedings of the 25th AGILE Conference on Geographic Information Science, 2022.
Editors: E. Parseliunas, A. Mansourian, P. Partsinevelos, and J. Suziedelyte-Visockiene.
This contribution underwent peer review based on a full paper submission.
© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

1 of 7

1.2 Vector tiles as an alternative to WMTS

An efficient alternative, which has the capabilities to

replace WMTS as the currently most used service for web

mapping, is the use of vector tiles (VT). This technology

came up with Google which has been using VT since 2010

for their mobile version of Google Maps (Netlek et al.,

2020). The general idea is to directly send tiled vector data

rather than raster images. Currently, there is no fully OGC

standard for VT. Vector tiles, however, become more and

more popular in the GI community (OGC, 2018). At the

moment, OGC evaluates VT and the initiative for the

development of an open standard just passed “pilot phase

2” (OGC, 2021). This initiative includes a draft for an

“OGC-API tiles” to serve maps or tiled feature data

divided into individual tiles.

1.3 Scope

This short paper results as a part of research cooperation

between the Carinthian University of Applied Science

(CUAS) and Carinthia’s governmental spatial data

infrastructure (SDI) named KAGIS. Over the last year,

KAGIS build up an infrastructure for offering vector tiles

relying on Open Source software solutions. They also see

a need in improving expertise in the field of VT. Part of

this project is to investigate the advantages and

disadvantages of VT for spatial data infrastructures based

on literature research and test implementations using the

vector tile environment of KAGIS focusing on the use

case of web mapping and serving VT data. This short

paper is focusing on the creation of VT in mvt format

using standard PostGIS (PostgreSQL with spatial

extension) functionality. For that, custom functions were

implemented including the selection of relevant vector

data out of the database, aspects of dynamic

generalization/simplification of geometries and the

transformation to Mapbox Vector Tile (mvt) format.

2 Methodology and means of implementation

Within this chapter selected previous studies and the

concept for the implementation of custom PostGIS

functions to serve VT data are described.

2.1 Previous work

Ingensand et al. (2016) and Martinelli and Roth (2016) are

describing an approach where PostgreSQL functionality

is used to serve data as vector tiles. Since version 2.4 of

the spatial extension for PostgreSQL, named PostGIS, it

is possible to create VT directly out of the database.

Ingensand et al. (2016) are describing the first concepts

and prototypical implementations of the swiss

governmental SDI VT services hosted via geo.admin.ch.

In their case study of 2016, they used TopoJSON as a data

format, because of its good capabilities to store

continuous polygons like zip-code areas. In the 2016 case

study of Ingensand et al., they already mentioned that this

mvt format might be better suitable than TopoJSON and

worth investigating. The current swiss VT

implementations are based on the mvt format, due to its

support of different clients, file sizes and efficient

encoding (geo.admin.ch, 2022).

Martinelli and Roth (2016) are describing another

approach of using PostGIS for creating VT data during the

project “OSM2Vectortiles”. The motivation was to offer

Open Street Map (OSM) data in VT format. The project

resulted in the successor project “OpenMapTiles” which

offers freely available OSM vector tiles based on the

MapTiler API, which serves the tiles in Mapbox/Google

Proto Buffer format with “pbf” file extension.

2.2 Standard PostGIS functionality

To serve data as mvt the PostGIS function “ST_AsMVT”

can be used. Within the function the tiling, according to a

regular tiling scheme, and encoding of relevant attributes

is implemented. The parameters for the “ST_AsMVT”

PostGIS function are as described in (PostGIS (a), 2022):

• row: Row data with at least a geometry column

• name: Name of the mvt layer

• extend: Tile extends in pixel (Default is square

of 4096)

• geom_name: Name of the geometry column

• feature_id_name: Name of the column holding

the unique identifier (Primary key)

The PostGIS documentation states, that for using the

“ST_AsMVT” function the geometry column must be in

tile grid coordinates, according to the Mapbox vector tile

specification. For transforming the geographical

coordinates into the relative mvt reference system the

PostGIS function “ST_AsMVTGeom” can be used. This

function transforms the coordinated as well as tries to

provide the validity of the geometry. The parameters for

the “ST_AsMVTGeom” PostGIS function are as

described in (PostGIS (b), 2022):

• geom: Name of the geometry column

• bonds: Bounding box of the tile

• extent: Tile extends in pixel (Default is square of

4096)

• buffer: Buffer distance (pixel) to optionally clip

geometries (Default 256)

• clip_geom: Boolean variable if geometry shall

be clipped (Default: True)

AGILE: GIScience Series, 3, 67, 2022 | https://doi.org/10.5194/agile-giss-3-67-2022 2 of 7

2.4 Generalisation aspects

Gaffuri (2011) describes the need for generalization in

web mapping and the benefits of vector data for

implementing dynamic generalization. This dynamic

graphic generalization should adapt the spatial data

display to the user’s needs (Gaffuri, 2011). Generalisation

aspects within tiled vector data can be supported by

(Ingensand et al., 2016):

• Preserving different levels of detail (LOD)

geometries of the same objects for different

zoom levels

• Dynamic simplification of geometries according

to zoom level

• Selection of relevant vector objects for a certain

zoom level

These techniques are a great way to decrease the file sizes

of vector tiles. Within the implementation of the custom

PostGIS functions to serve data in mvt format these

aspects are implemented and tested.

3 Implementation of custom PostGIS

functions to serve mvt data

This chapter is mainly focusing on the dynamic

generalisation aspects within the function and the pre-

processing of the VT. Other aspects, like input, output or

the transformation to mvt coordinates using standard

PostGIS functionality, are already explained in the

chapter “Methodology and means of implementation”.

3.1 Different LOD geometries of the same objects

Ingensand et al. (2016), is describing an approach of using

different LOD geometries of the same objects for different

zoom levels. According to this idea, different data layers

for the VT map can be used. For small scales (zoomed

out) a general overview layer with simplified and

aggregated objects is used whereas for big scales (zoomed

in) a more detailed layer is used. The usage of different

data layers can be implemented in two different ways.

Both are tested within the implementation. The first one

is to provide two different layers with two different

PostGIS functions for the VT. The generalized layer is

included within the small scale (zoomed-out) tiles and the

detailed layer within the big scale (zoomed-in) tiles,

whereas no tiles include both layers. This can be

implemented within the “WHERE” clause of the different

PostGIS functions. For example, a general WHERE

clause for the whole custom function like “WHERE z <

10” would result in an mvt layer only served for zoom

levels smaller than 10.

The second option to implement different LOD layers for

different zoom levels is to assign different PostGIS data

tables to the same PostGIS function. Within the function,

an “IF-ELSE” clause concerning the zoom level is

controlling the data origin for the map layer. Within this

approach, both PostGIS tables must share the same

attributes and data types, which are finally served by the

PostGIS function. A comparative illustration of both

aspects can be seen in Figure 1.

Figure 1. Comparative illustration of two implemented variants to use different LOD geometry tables of the same map

topic. Top: two different layers with two different PostGIS functions for the VT map, Bottom: different PostGIS data

tables assigned to the same PostGIS function.

AGILE: GIScience Series, 3, 67, 2022 | https://doi.org/10.5194/agile-giss-3-67-2022 3 of 7

3.2 Dynamic simplification

Another approach, mentioned by Ingensand et al. (2016),

is the dynamic simplification of geometries according to

the zoom level. Within the project’s implementation, this

concept is implemented with the use of the “ST_Simplify”

PostGIS function (PostGIS (c), 2022) within the custom

mvt PostGIS function. “ST_Simplify” uses the “Douglas-

Peucker” algorithm to return a simplified version of the

geometry of the input. The simplified geometry leads to

smaller payloads of the VT. The function has the

following parameters.

• Input geometry: Geometry originated from the

PostGIS data table

• Tolerance: a factor influencing the level of

simplification

The tolerance parameter is influencing the level of

simplification. The higher the tolerance value the higher

the simplification. Within the custom PostGIS function

for serving mvt data, the zoom value can be used to

dynamically manipulate the tolerance value and therefore

dynamically simplify the geometries. Using the

“St_Simplify” PostGIS function may not be suitable for

every use case. Geometries can lose characteristic features

and topology between objects may not be maintained

(PostGIS (c), 2022). For the use case of web mapping and

topological background map, this might not be the same

relevance as for data used in analysis. Within the

implementation, the relation of the zoom level on the

tolerance value was selected for each layer individually,

by visual observing the served VT data and visual

comparisons of already existing raster tiled “role-model”

maps. Another PostGIS function tested is the

“ST_SimplifyPreserveTopology” function which should

maintain the topological relations within the

simplification process. The two functions resulted in no

visual differences within the VT data. An illustration of

the geometry simplification according to zoom level can

be seen in Figure 2.

3.3 Selection of relevant vector objects

The last generalization aspect mentioned by Ingensand et

al. (2016), is the selection of relevant vector objects for a

certain zoom level. This aspect is implemented in two

different ways within the WHERE clause of the

developed custom PostGIS functions. The first is attribute

driven, where a certain attribute is describing for which

zoom levels the data shall be included. This can be a direct

Integer value representing a zoom level or a class

attribute. Predefined rules within the custom PostGIS

function control which classes shall be included for a

certain zoom level. The second way is geometry driven,

where the area of a polygon, in relation to the zoom level,

is controlling the selection. This method is only working

for polygon layers. A representation of that can be seen in

Figure 3. An example SQL example for an implemented

custom PostGIS function can be seen in Appendix 1.

Figure 3. Selection of relevant vector objects for a certain zoom

level in relation of the vector objects area. As the user zooms in

more and more smaller buildings become visible.

4 Summary and discussion

This short paper describes key aspects of the

implementation of custom PostGIS functions for serving

data in mvt format. Within the custom functions standard

PostGIS functionality is used to select relevant vector data

out of the database, dynamically simplify geometries and

transform the data to tiled mvt format. These custom

functions serve as a starting point for further

implementations of VT by KAGIS. With the use of a VT

capable map server, like GeoServer, these custom

PostGIS functions, in addition to a metadata description

Figure 2. Illustration of geometry simplification in relation to zoom level. Left: simplified polygons small zoom levels

(z). Right: More detailed geometries for larger zoom levels (z).

AGILE: GIScience Series, 3, 67, 2022 | https://doi.org/10.5194/agile-giss-3-67-2022 4 of 7

based on Mapbox specifications, can be used to serve VT

data for the purpose of high-performance web mapping.

The aspects described in this short paper are part of further

implementations of new web mapping technologies for

Carinthia’s governmental SDI. The custom PostGIS

functions for creating tiled vector data shall be used for

further implementations of KAGIS for the use case of

high-performance web maps and serving geospatial data

based on vector tile data in a more efficient way.

As described earlier other case studies, like Ingensand et

al. (2016), are focusing on the usage of PostGIS

functionality to serve VT data. For generalization, they

used PostgreSQL/PostGIS functionality as well. The

functionality was applied to the line and polygon objects

to create vector data for different LOD. All different LOD

layers were computed as new tables within PostgreSQL

and are used for the different zoom levels within the VT

tiling scheme whereas within this study the simplification

is executed dynamically in relation to the current zoom

level within the custom PostGIS functions.

A similar approach was implemented by Martinelli and

Roth (2016) during the project “OSM2Vectortiles”. All

the objects of a layer are stored within one table. Because

only a subset of data should be visible within a certain

zoom level, SQL views were created, which shall function

as a generalisation concept. These views filter the data

according to object size (area or length) concerning the

expected zoom level and were used to generate the tiles.

As described in chapter 3.3 the selection of relevant

objects according to zoom level is integrated within the

custom PostGIS function to serve mvt data.

Both approaches are alternative ways to implement the

generalisation aspects, for VT data within a PostGIS

environment as described in this short paper.

Nevertheless, these generalisation techniques can result in

unwanted visual errors within a client. Li et al. (2017),

describe such possible errors as gaps within

lines/polygons or unclean rendered symbology. These

gaps also can be seen within Figure 2. Therefore, a further

evaluation of these unwanted errors is needed. This can be

done by comparing the served mvt data with the original

data to detect changes in positional/geometrical accuracy.

As described earlier it always depends on the use case of

the VT data. There are other requirements for the use case

of web mapping and topological background map, as for

data used in analysis. Furthermore, the implemented

generalisation aspects are rather simple and are only

focusing on the three techniques described by Ingensand

et al. (2016). The implementation of more complex

generalisation aspects, like displacement or exaggeration,

require further investigations.

Acknowledgments

As already mentioned, the development of the concept of

using PostGIS functionality and its implementation of it

was executed within the research cooperation between

CUAS and KAGIS and an external consultant named

Wilhelm Berg. Wilhelm Berg is owner of the Austrian

company: “BergWerk GIS EDV-Dienstleistungen e.U”

(Berg, 2022). Hereby we would like to give thanks to

Wilhelm Berg for the support in expertise and concept

development.

References

Berg, W.: BergWerk GIS EDV-Dienstleistungen e.U. -

Homepage, available at: https://www.bergwerk-gis.at/,

last access: 5 April 2022, 2022.

Fu, P. and Sun, J.: Web GIS Principles and Applications,

1st edition, California: Esri Press, 2011.

Gaffuri, J.: Improving Web Mapping with Generalization,

Cartographica: The International Journal for

Geographic Information and Geovisualization, 46, 83-

91, https://doi:10.3138/carto.46.2.83, 2011.

Gaffuri, J.: Toward Web Mapping with Vector Data, in:

Geographic Information Science, GIScience 2012,

edited by Xiao, N., Kwan, M., Goodchild, M.F. and

Shekhar, S., Lecture Notes in Computer Science, vol

7478. Springer, Berlin, Heidelberg,

https://doi.org/10.1007/978-3-642-33024-7_7, 2012.

geo.admin.ch: Vector Tiles Service: Verfügbare Dienste

und Daten. Bundesamt für Landestopografie swisstopo,

KOGIS (Koordination, Geoinformation und Services),

available at: : https://www.geo.admin.ch/de/geo-

dienstleistungen/geodienste/darstellungsdienste-

webmapping-webgis-

anwendungen/vector_tiles_service.html, last access: 5

April 2022, 2022.

Goodchild, M.F.: Tiling large geographical databases, in:

Design and Implementation of Large Spatial

Databases, SSD 1989, edited by Buchmann, A.P.,

Günther, O., Smith, T.R. and Wang, Y., Lecture Notes

in Computer Science, vol 409. Springer, Berlin,

Heidelberg, https://doi.org/10.1007/3-540-52208-

5_25, 1990.

Ingensand, J., Nappez, M., Moullet, C., Gasser, L., Ertz,

O. and Composto, S.: Implementation of Tiled Vector

Services: A Case Study, SDW@ GIScience, 26-34,

2016

Li, L., Hu, W., Zhu, H., Li, Y. and Zhang, H.: Tiled vector

data model for the geographical features of symbolized

AGILE: GIScience Series, 3, 67, 2022 | https://doi.org/10.5194/agile-giss-3-67-2022 5 of 7

https://www.bergwerk-gis.at/
https://doi:10.3138/carto.46.2.83
https://doi.org/10.1007/978-3-642-33024-7_7
https://www.geo.admin.ch/de/geo-dienstleistungen/geodienste/darstellungsdienste-webmapping-webgis-anwendungen/vector_tiles_service.html
https://www.geo.admin.ch/de/geo-dienstleistungen/geodienste/darstellungsdienste-webmapping-webgis-anwendungen/vector_tiles_service.html
https://www.geo.admin.ch/de/geo-dienstleistungen/geodienste/darstellungsdienste-webmapping-webgis-anwendungen/vector_tiles_service.html
https://www.geo.admin.ch/de/geo-dienstleistungen/geodienste/darstellungsdienste-webmapping-webgis-anwendungen/vector_tiles_service.html
https://doi.org/10.1007/3-540-52208-5_25
https://doi.org/10.1007/3-540-52208-5_25

maps, PLoS ONE, 12, 1–26,

https://doi.org/10.1371/journal.pone.0176387, 2017.

Martinelli, L. and Roth, M.: Updatable Vector Tiles from

OpenStreetMap, Bachelor thesis, HSR Hochschule für

Technik Rapperswil, Rapperswil-Jona, Switzerland,

2016.

Netlek, R., Masopust, J., Pavlicek, F. and Vilem, P.:

Performance Testing on Vector vs. Raster Map Tiles—

Comparative Study on Load Metrics, ISPRS

International Journal of Geo-Information, 9, 101-124,

https://doi.org/10.3390/ijgi9020101, 2020.

OGC (a): Open Geospatial Consortium (OGC) - OpenGIS

Web Map Tile Service Implementation Standard,

available at https://www.ogc.org/standards/wmts, last

access: 5 April 2022, 2010.

OGC (b): Open Geospatial Consortium (OGC) - OpenGIS

Web Feature Service 2.0 Interface Standard, available

at: https://www.ogc.org/standards/wfs, last access: 5

April 2022, 2010.

OGC: Open Geospatial Consortium (OGC) - Testbed-13:

Vector Tiles Engineering Report, available at:

https://docs.ogc.org/per/17-041.html, last access: 5

April 2022, 2018.

OGC: Open Geospatial Consortium (OGC) - Vector Tiles

Pilot Phase 2, available at:

https://www.ogc.org/projects/initiatives/vtp2, last

access: 5 April 2022, 2021.

PostGIS (a): ST_AsMVT online documentation,

available at: https://postgis.net/docs/ST_AsMVT.html,

last access: 5 April 2022, 2022.

PostGIS (b): ST_AsMVTGeom online documentation,

available at:

https://postgis.net/docs/ST_AsMVTGeom.html, last

access: 5 April 2022, 2022.

PostGIS (c): St_Simplify online documentation, available

at: https://postgis.net/docs/ST_AsMVTGeom.html,

last access: 5 April 2022, 2022.

Pywell, H.R. and Niedzwiadek, H.A.: The wetlands

analytical mapping system: WAMS, USA, 1980.

AGILE: GIScience Series, 3, 67, 2022 | https://doi.org/10.5194/agile-giss-3-67-2022 6 of 7

https://doi.org/10.1371/journal.pone.0176387
https://doi.org/10.3390/ijgi9020101
https://www.ogc.org/standards/wmts
https://www.ogc.org/standards/wfs
https://docs.ogc.org/per/17-041.html
https://www.ogc.org/projects/initiatives/vtp2
https://postgis.net/docs/ST_AsMVT.html
https://postgis.net/docs/ST_AsMVTGeom.html
https://postgis.net/docs/ST_AsMVTGeom.html

Appendix 1

Exemplary SQL statement for creation of a custom

PostGIS function serving data in mvt format.

AGILE: GIScience Series, 3, 67, 2022 | https://doi.org/10.5194/agile-giss-3-67-2022 7 of 7

