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Abstract. Water quality (WQ) modeling can be used for
gaining insight into WQ issues in order to implement ef-
fective mitigation efforts. Process-based nutrient models
are very complex, requiring a lot of input parameters and
computationally expensive calibration. Recently, ML ap-
proaches have shown to achieve an accuracy comparable
to the process-based models and even outperform them
when describing nonlinear relationships. We used obser-
vations from 242 Estonian catchments, amounting to 469
yearly total nitrogen (TN) and 470 total phosphorus (TP)
measurements covering the period 2016-2020 to train ran-
dom forest (RF) models for predicting annual N and P
concentrations. We used a total of 82 predictor variables,
including land use and land cover (LULC), soil, climate
and topography parameters and applied a feature selec-
tion strategy to reduce the number of dependent features
in the models. The SHAP method was used for deriving
the most relevant predictors. The performance of our mod-
els is comparable to previous process-based models used
in the Baltic region. However, as input data used in our
models is easier to obtain, the models offer superior appli-
cability in areas, where data availability is insufficient for
process-based approaches.

Keywords. water quality, interpretable machine learning,
random forest

1 Introduction

WQ modeling plays an important role in better under-
standing the magnitude and impact of WQ issues and in
providing evidence for policy-making and implementing
water management plans (Tang et al., 2019). Thus far, a
common approach to WQ modeling has been the use of
process-based models such as Soil and Water Assessment
Tool (SWAT) (Arnold et al., 1998; Malagé et al., 2017; Me
et al., 2015) or HYPE (Arheimer et al., 2012; Lindstrém
et al., 2010), which have been widely used at the catch-

ment level. However, process-based modeling is data- and
calculation-intensive (Clark et al., 2017), and requires data
that is not often easily available (e.g. soil bulk density,
soil organic carbon content) or difficult to measure across
larger areas.

In a thorough review article Tiyasha et al. (2020) in-
vestigated studies from the period 2000-2020 and found
there has been an exponential growth in adopting ML-
based methods for WQ modeling purposes. Neural net-
work (NN) models have shown to be good at detecting the
non-linear relationships in hydrological processes, result-
ing in accurate predictions of flow, sediment and nutrient
concentrations (Kuo et al., 2004; Sarkar and Pandey, 2015;
Singh et al., 2009). However, in order to achieve high ac-
curacy in an NN model, calibration in the form of hyper-
parameter tuning needs to be implemented. For regression
tasks, tree-based ML methods can often provide a robust
alternative to deep learning techniques (Ho et al., 2019;
Visser et al., 2022). Although many of the RF models have
been applied only on the catchment scale, recent studies
have shown that RF can also perform well in the case of
large-scale WQ datasets. In particular, N and P models us-
ing RF (Marzadri et al., 2021; Sheikholeslami and Hall,
2022; Shen et al., 2020) have been applied successfully on
the subcontinental and global level, thus producing valu-
able benchmarks about the scalability of RF models.

The aim of the study was to model annual total nitrogen
(TN) and total phosphorus (TP) concentrations at national
level using an ML approach. We used WQ data originating
from the Environmental Monitoring Database KESE (Es-
tonian Environment Agency, 2021) to train RF models for
nutrient concentration prediction in 242 catchments across
Estonia. A total of 82 environmental variables were used
as predictors in the models. In order to yield the best re-
sults, a feature selection strategy along with hyperparame-
ter optimization was performed when building the models.
The models are applicable for predicting nutrient loads on
an annual level, e.g. for the purpose of reporting national
level WQ statistics in regional projects, such as HELCOM
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in the Baltic Sea region (HELCOM, 2009). The results
showed that this relatively basic RF modeling approach
can have a performance similar to process-based models.
Moreover, these models are easier to reuse and apply on a
larger scale, since the required inputs can be derived from
freely available datasets (e.g. satellite imagery).

2 Methods
2.1 WQ observations

Estonian WQ data was obtained from the KESE environ-
ment monitoring system website maintained by the Envi-
ronment Agency (Estonian Environment Agency, 2021).
The yearly mean values were calculated for a particular
site if it had observations available in at least four distinct
months within a year. The summary statistics of the aggre-
gated yearly mean values are given in Table 1.

2.2 Catchments of WQ sites

For each of the 242 sites, catchments were delineated
from the 5 m resolution LiDAR digital elevation model
(DEM) provided by the Estonian Land Board (Estonian
Land Board, 2020a) (Fig. 1). Hydrological conditioning
involving burning in culverts, bridges, rivers, streams and
larger ditches, as well as sink filling was applied to the
DEM in order for the flow direction to better represent re-
ality. The catchment delineation workflow was performed
using the ArcHydro toolbox in ArcGIS (Esri, 2020). The
size of the catchments ranged from 0.9 to 8,513.9 km?.

2.3 WQ predictors

A total of 82 variables were used as predictors in the
model (Table 2). The source data included layers in raster
(GeoTIFF), vector (SHP and GPKG) and NetCDF for-
mats. With the exception of the hydrology and agricul-
ture parameters, all other predictor datasets were con-
verted into raster layers with 5 m resolution in align-
ment with the DEM. The rasterstats Python package was
used to calculate zonal statistics of the predictors for each
catchment. Fertilizer deposition (manure_dep_n and ma-
nure_dep_p), the climate variables and the three forest dis-
turbance derivations were the only predictors available on
an annual basis in the corresponding source datasets and,
thus were calculated for each year in the study period as
spatio-temporal input data. All other predictors were con-
sidered to stay static throughout the study period.

2.4 WQ modeling using RF
2.4.1 Feature selection

In general, RF is considered to be comparatively resis-
tant to collinear features. However, reducing the number
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of features can provide further support, e.g. trying to limit
the amount of predictors to reduce data requirements in
general, pre-processing of predictor data when reusing the
model in the future or applying to other regions, or where
data is not yet available in an ML ready form. In our case,
the main purpose of feature reduction was the potential
reuse of the model, i.e. as many parameters are not up-
dated enough or are available only tentatively then it is
preferable to use the ones that are the most easily obtained.

In order to reduce the number of collinear features, we em-
ployed a feature selection strategy shown in Fig. 2. The
strategy for reducing the number of features was as fol-
lows:

e Each predictor was assigned a subcode given in Ta-
ble 2. In general, predictors having multiple statisti-
cal derivations, but originating from the same source
data had the same subcode.

e Pairwise correlations between all features were cal-
culated along with correlations between features and
the target value (WQ concentration)

e Feature pairs with correlation values above a certain
correlation threshold (Table 3) were then extracted
and sorted based on the strength of the correlation

e For each pair, the feature with a lower correlation
with the target was determined

e While iterating over the feature pairs, the feature with
the lower target correlation was removed from the set
as long as at least one feature from the corresponding
group remained in the set. For example, slope_mean,
slope_min and slope_max could all be removed, pro-
vided that slope_std remained in the feature set due to
being less collinear with the other features and, thus,
having a lower placement in the correlation order.

As a result of the feature selection procedure, four fea-
ture sets were generated for TN and TP (Table 3). Each set
corresponded to a Pearson correlation coefficient (0.9, 0.8,
0.7 or 0.6) used as a threshold to determine whether the
feature selection procedure was applied to a feature pair.

2.4.2 Model building workflow

In order to investigate the predictive capabilities of the se-
lected environmental variables, RF regression models for
both nutrients were built using the Scikit-learn (Pedregosa
et al.,, 2011) ML package in Python. A separate model
was built for each of the feature sets derived from the fea-
ture selection procedure using the RandomForestRegres-
sor class from Scikit-learn. The workflow used for devel-
oping the models is given in Fig. 3.

Hyperparameter optimization was carried out by using the
RandomizedSearchCV algorithm (Bergstra and Bengio,
2012) from Scikit-learn’s model_selection module using
cross-validation with k = 5. The set of hyperparameters
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Table 1. Statistics for WQ observations at the yearly level.

Parameter  Observations  Sites ~ Minimum Mean Maximum  Median Standard
deviation
mgL™* mgL™! mgL~* mgL~* mgL~*
TN 469 242 0.478 2.662 11.933 2.09 1.952
TP 470 242 0.008 0.051 0.27 0.044 0.032

measured median
TN (mg/1) at sites
o <15
15-25
2.6-3.5
3.6-4.5
>4.5

TP (mg/]) at sites
<0.03
0.030 - 0.040
0.041 - 0.050
0.050 - 0.060

Figure 1. Median TN (A) and TP (B) concentration in observation sites 2016-2020.
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Table 2. List of WQ predictor variables.

Category Code Subcode Description Unit Source

topography dem_min, dem_max, dem_mean, dem Elevation m (Estonian Land Board,
dem_std 2020a)

topography  tri_min, tri_max, tri_mean, tri_std tri Terrain ruggedness index (Estonian Land Board,

(TRI) 2020a)
topography twi_min, twi_max, twi_mean, twi_std twi Topographic wetness index (Estonian Land Board,
(TWI) 2020a)

topography  flowlength_min, flowlength_max, flowlength Flow length in the catchment (Estonian Land Board,
flowlength_mean, flowlength_std 2020a)

topography slope_min, slope_max, slope_mean, slope Slope (Estonian Land Board,
slope_std 2020a)

soil awcl_min, awcl_max, awcl_mean, awcl Water holding capacity (first mm HoO mm™ 1 (Kmoch et al., 2021)
awcl_std layer) soil

soil bd1_min, bdl_max, bd1_mean, bd1_std bdl Bulk density (first layer) gem”™ 3 (Kmoch et al., 2021)

soil clayl_min, clayl_max, clayl_mean, clayl Clay content (first layer) % mass of fine earth (Kmoch et al., 2021)
clayl_std fraction

soil k1_min, k1_max, k1_mean, k1_std k1 Hydraulic conductivity (first mmh~?! (Kmoch et al., 2021)

layer)

soil rockl_min, rockl_max, rockl_mean, rockl Rock content (first layer) % mass of fine earth (Kmoch et al., 2021)
rockl_std fraction

soil sand1_min, sand1_max, sand1_mean, sand1 Sand content (first layer) % mass of fine earth (Kmoch et al., 2021)
sand1_std fraction

soil silt]l_min, siltl_max, siltl_mean, siltl Silt content (first layer) % mass of fine earth (Kmoch et al., 2021)
siltl_std fraction

soil socl_min, socl_max, socl_mean, socl Soil organic carbon (SOC) % of soil weight (Kmoch et al., 2021)
socl_std content (first layer)

LULC arable_prop arable Proportion of arable land % of catchment area  (Estonian Land Board,

2020b)

LULC forest_prop forest Proportion of forest % of catchment area  (Estonian Land Board,

2020b)

LULC grassland_prop grassland Proportion of grassland % of catchment area  (Estonian Land Board,

2020b)

LULC other_prop other Proportion of other LULC % of catchment area  (Estonian Land Board,

2020b)

LULC urban_prop urban Proportion of urban land % of catchment area  (Estonian Land Board,

2020b)

LULC water_prop water Proportion of water % of catchment area  (Estonian Land Board,

2020b)

LULC wetland_prop wetland Proportion of wetland % of catchment area  (Estonian Land Board,

2020b)

LULC arable_prop_buff_100, arable Proportion of arable land % of stream buffer (Estonian Land Board,
arable_prop_buff_500, within 100/500/1000 m 2020b)
arable_prop_buff_1000 stream buffer

LULC forest_disturb_prop_buff_100, forest_disturb Proportion of disturbed forest % of stream buffer (Senf, 2021)
forest_disturb_prop_buff_500, area within 100/500/1000 m
forest_disturb_prop_buff_1000 stream buffer

LULC rip_veg_nat_prop, rip_veg_drain_prop rip_veg Total area of riparian % of catchment area  (Uuemaa et al., 2021)

vegetation buffer around
natural streams/drainage
ditches divided by catchment
area

hydrology area area Area of the catchment m~?

hydrology stream_density stream_density Stream density mm~? (Estonian Land Board,

2020b)

hydrology pol_sen_drain_m_prop, pol_sen Proportion of riparian buffer % of riparian buffer Uuemaa et al. (2021)
pol_sen_drain_h_prop, moderately/highly/very highly
pol_sen_drain_vh_prop sensitive to pollution around

drainage ditches/natural
streams

agriculture livestock_density livestock_density ~ Density of livestock livestock units per PRIA

ha

agriculture manure_dep_n, manure_dep_p manure Mean deposition of kgha™?! (Statistics Estonia, 2021)

nitrogen/phosphorus in
manure

climate precip_mean precip Mean annual total mm (Muiioz Sabater, 2021)

precipitation

climate snow_depth_mean snow_depth Mean annual snow depth cm (Mufioz Sabater, 2021)

climate temp_max, temp_mean, temp_min temp Maximum/mean/minimum c° (Mufioz Sabater, 2021)

annual temperature

geology limestone_prop limestone Proportion of catchment % of catchment area  (Estonian Land Board,

located on limestone

2020b)

Table 3. Feature sets generated during the feature selection procedure.

Threshold | TN feature set ~ Number of features | TP feature set ~ Number of features
0.9 TN_FEAT V1 62 TP_FEAT V1 64
0.8 TN_FEAT_V2 55 TP_FEAT V2 56
0.7 TN_FEAT_V3 47 TP_FEAT_V3 47
0.6 TN_FEAT_V4 38 TP_FEAT_ V4 40
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Figure 3. Workflow used for building the RF model for each feature set.

evaluated with RandomizedSearchCV is given in Table 4.
The procedure was repeated for each feature set, since the
best combination of hyperparameters can depend on the
available features. The algorithm randomly selected differ-
ent hyperparameter combinations and scored each of the
iterations based on the mean squared error (MSE). Finally,
the hyperparameter set with the smallest MSE was flagged
as the best for a particular model configuration and used
for fitting the model.

2.4.3 Model evaluation

Three accuracy indicators were calculated for the different
model configurations of both nutrients:

e r2_train: the coefficient of determination (R?) calcu-
lated on training data

e r2_test: R? calculated on test data

e mape_train: mean absolute percentage
(MAPE) calculated on training data

error

e mape_test: MAPE calculated on test data

For MAPE calculated on the test set scores below 20%
show good prediction accuracy, while scores in the
20-50% range are considered reasonable. Out of the four
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model versions, the best model for both nutrients was de-
termined based on r2_test, while also trying to minimize
the number of features used, i.e. if multiple models had
a similar accuracy then the model with the least amount
of features was chosen. In addition to aforementioned per-
formance indicators, feature importances were derived for
the best TN and TP models. As a default option, the fea-
ture importances in RF are based on Gini importance (or
mean decrease impurity), which is considered to be biased
towards features with high cardinality (Gromping, 2009).
To achieve a less biased result, the SHapley Additive ex-
Planations (SHAP) explainable Al (XAI) method from the
corresponding Python package was implemented to detect
the most important features. The method uses Shapley val-
ues from game theory to estimate how each feature con-
tributes to the prediction (Lundberg et al., 2020).

For each catchment, the ratio between the observed and
predicted values was also calculated. This ratio indicates
whether the model under (values greater than 1.0) or over-
estimated (lower than 1.0) the nutrient concentration of a
particular sample. In order to explore the spatial variabil-
ity in the model performance, the ratios were plotted on
the map.
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Table 4. Hyperparameters used in RandomizedSearchCV.

Parameter Values
n_estimators

max_depth
min_samples_split 2,5, 10
min_samples_leaf 1,2, 4

max_features
bootstrap

oob_score TRUE

10, 20, 30, 40, 50, 60, 70, 80, 90, 100
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None

auto, sqrt, log2
True, False

2.5 Data and software availability

The scripts used for data processing and building the mod-
els are available on Zenodo at https://doi.org/10.5281/
7eno0do.5910319 (Virro et al., 2022). The models along
with their corresponding input data and the results of the
modeling are available at https://doi.org/10.5281/zenodo.
6325311 (Virro and Kmoch, 2022).

3 Results

3.1 Performance of the models corresponding to
each feature set

The results of TN models using the four feature sets are
given in Table 5 and the results of TP models in Table
6. The difference between r2_train and r2_test was sig-
nificantly smaller in case of the TN models compared to
TP. Therefore, the TN models are less likely to overfit.
Since the accuracy of the models corresponding to the
four feature sets was similar for both nutrients, the best
model was determined by trying to minimize the size of
the feature set. Thus, TN_MODEL_V4 (38 features) and
TP_MODEL_V4 (40) were deemed as the best, because
they used less than half of the original predictors (82).

3.2 Feature importances

In order to detect the most important factors contributing
to the nutrient concentrations, feature importances based
on SHAP values were calculated for the best models. The
impact on the the prediction is given in the units of the tar-
get, i.e. mg L~!. Due to differences in their corresponding
concentration values (Table 1), the SHAP values of TN are
several magnitudes higher than those of TP.

The most important features along with the direction of
the impact a given feature has on the prediction are given
in Fig. 4. It can be seen that arable_prop and rockl_mean
had a positive correlation with TN concentration, while
kl_mean and sandl_mean a negative one (Fig. 4A). As
with the latter two features, TN was also higher in catch-
ments were forest_prop was low. In the case of TP,
high limestone_prop resulted in a lower TP concentration,
while both higher grassland_prop and urban_prop had a
positive correlation with the target, meaning that higher
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urban and grassland proportion in the catchment results in
higher TP values (Fig. 4B). A negative correlation was de-
tected for dem_min and a positive one for stream_density.

3.3 Spatial distribution of modeling results

The spatial distribution of modeling results is given in Fig.
5. In the case of both models the ratios in around half the
catchments were in the range 0.91-1.11, meaning that the
prediction was either over or underestimated by only 10%.
The TN model resulted in 114 catchments with ratios in
this range, while the total range of the values was 0.27—
2.17 (Fig. 5A). In general, the greatest discrepancies be-
tween the observed and predicted TN values were more
common in smaller catchments with 11 catchments hav-
ing a ratio below 0.5 and five a ratio above 1.5.

The ratios of the less accurate TP model showed more vari-
ability with ratios ranging from 0.33 to 3.33 (Fig. 5B).
Still, there were 119 catchments in the range 0.91-1.11.
The greatest over (four catchments) and underestimations
(five catchments) were present in a few small catchments
on the northern coast and the islands.

4 Discussion
4.1 Performance of the models

The RF models built in this study were able to reach
an accuracy comparable to process-based models used in
similar studies previously. Model uncertainty expressed
here through the observed to predicted ratio was within
the range previously shown by the Balt-HYPE model
(Arheimer et al., 2012) and the R? values were either
higher or similar to catchments tested with HYPE in simi-
lar environmental conditions (Lindstrom et al., 2010). The
difference in the accuracy of the best TN (R? =0.83)
and TP (R? =0.52) models matches the observations
described in previous nutrient modeling efforts. Both
process-based (Hollaway et al., 2018; Malagé et al., 2017;
Meetal., 2015) and ML (Alvarez-Cabria etal., 2016; Shen
et al., 2020) modeling studies have shown that the predic-
tive power of TN models is usually greater than TP mod-
els.

Although catchment area was not among the most impor-
tant features in either model, a relationship between model
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Table 5. Results of the four model versions used for TN prediction along with hyperparameters derived from the RandomizedSearchCV
algorithm.

Attribute TN_MODEL_V1 TN_MODEL_V2 TN_MODEL_V3 TN_MODEL_V4
n_features 62 55 47 38
test_size 0.3 0.3 0.3 0.3
n_samples_train 328 328 328 328
n_samples_test 141 141 141 141
r2_train 0.877 0.937 0917 0.928
r2_test 0.791 0.835 0.821 0.833
mape_train 0.21 0.16 0.17 0.17
mape_test 0.31 0.30 0.30 0.29
max_depth 90 30 30 60
max_features sqrt sqrt sqrt sqrt
min_samples_leaf 4 2 2 2
min_samples_split 5 2 2 5
n_estimators 30 30 30 60
bootstrap True True True True

Table 6. Results of the four model versions used for TP prediction along with hyperparameters derived from the RandomizedSearchCV
algorithm.

Attribute TP_MODEL_V1 TP_MODEL_V2 TP_MODEL_V3 TP_MODEL_V4
n_features 64 56 47 40
test_size 0.3 0.3 0.3 0.3
n_samples_train 329 329 329 329
n_samples_test 141 141 141 141
r2_train 0.916 0.856 0.94 0.926
r2_test 0.496 0.52 0.484 0.517
mape_train 0.17 0.17 0.13 0.15
mape_test 0.27 0.26 0.27 0.26
max_depth 10 60 NaN 10
max_features log2 sqrt log2 log2
min_samples_leaf 1 2 1 1
min_samples_split 2 5 2 2
n_estimators 60 60 60 60
bootstrap True True True True
A TN_MODEL_V4 B TP_MODEL_V4
R*=0.833 ) R*=0.517
High High
arable_prop 3 . -W “ 8wl o ejemenl o o limestone_prop R %
rock1_mean = -'M' . 8 o hod we oo grassland_prop . * U &
k1_mean L] .ﬂ*ﬁ o =8 WyIMANS o urban_prop *' B o [
sand1_std '400 e ° dem_min --4— o @ LRCL ] °
limestone_prop M § stream_density -‘ *ﬂ- é
livestock_density *ﬂ” oo % clay1_mean *“ = %
forest_prop -‘-"-“ Sem we = rip_veg_drain_prop * o w
twi_mean & *ﬁ" awc1_mean * St @0
pol_sen_nat_h_prop . w rip_veg_nat_prop +- e
water_prop - *b* manure_dep_p L) -’.'- .
050 -025 000 025 050 075 100 o 0005 0.000 0.005 0010 0015 o
SHAP value (impact on model output) SHAP value (impact on model output)

Figure 4. SHAP summary plots of the best models for TN (A) and TP (B). Here, each sample is colored by its corresponding feature
value with higher values shown in pink and lower values in blue.
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Observed vs
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Figure 5. Spatial distribution of the ratio between observed and predicted values in catchments for the best TN (A) and TP (B) model.
Overestimated concentrations are indicated by ratios lower than 1.0, while ratios greater than 1.0 show where the model underestimated
the nutrient concentrations.
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performance and catchment size was detected with smaller
catchments being more likely to be either under or overes-
timated (Fig. 5). In general, larger catchments are more di-
verse in LULC with forests and wetlands acting as buffers
between fields and streams. Therefore, more nutrients are
adsorbed during transport, which results in more stable
concentrations in streams (Lintern et al., 2018). Small
catchments are more likely to be more uniform in LULC
and soil (Bartley et al., 2012), which can make them less
resilient when dealing with the effects of nutrient runoff,
resulting in greater fluctuations in concentration (Bhat-
tacharjee et al., 2021; Smith et al., 2005).

4.2 Most important features

The feature selection strategy worked well and the best
performing models used the smallest corresponding fea-
ture sets in the case of both TN and TP. Our study showed
that large numbers of features (predictors) are not always
necessary to achieve good accuracy with ML models and
rather relevant features are more important to achieve good
accuracy.

From the list of the most important features in the TN
model (Fig. 4A), occurrence of arable_prop and live-
stock_density were expected as they have been commonly
described as some of the most influential predictors due
to increasing fertilizer and manure deposition in the catch-
ment (He et al., 2011; Hooda et al., 2000; Liu et al., 2020).
Likewise, the role of forests in retaining N explains the
negative correlation between forest_prop and TN concen-
tration (Moreno-Mateos et al., 2008; Peterjohn and Cor-
rell, 1984).

One of the most important predictors for TP was found to
be limestone_prop, which had a negative correlation with
TP (Fig. 4B), meaning that TP losses were smaller from
areas where limestone bedrock was dominating. This can
be explained by the well-known fact that neutral or even
higher pH values are optimal for the uptake of phosphates
by plants, which in turn reduces TP losses (Barrow, 2017).
Wastewater treatment plants and sewage systems are a ma-
jor source of P from urban areas (Edwards and Withers,
2008; Lintern et al., 2018; Yang and Toor, 2018), which
explains why urban_prop was the strongest predictor for
TP related to LULC. The occurrence of dem_min is likely
related to urban_prop as some of the biggest urban areas
in Estonia are located in low lying areas on the coast. Nu-
trients reach the waterbodies faster if the stream network
is dense, which explains the higher TP values from catch-
ments with higher stream_density (Ebeling et al., 2021;
Gentry et al., 2007).

5 Conclusions and outlook

Compared to process-based models, the RF models offer
superior scalability and reusability. Discrete and expensive
to measure input data (e.g. soil bulk density) is required
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in order to parameterize and validate process-based mod-
els successfully (Clark et al., 2017; Yilmaz et al., 2008).
Such models can only be used in areas with sufficient and
freely available input data, which limits their applicability
for regional level modeling. On the other hand, input data
for ML is easier to obtain as there are abundant open data
sources available (e.g. LULC from satellite imagery) for
extracting predictors. Thus, our models are applicable in
regions, where data availability is insufficient for process-
based solutions. Additionally, the use of XAl techniques
such as SHAP enable to extract insight (e.g. feature im-
portance) needed for understanding the specific forces af-
fecting WQ.

Some of the uncertainty in our RF models is due to gaps
in the KESE (Estonian Environment Agency, 2021) WQ
time series. In most of the catchments the annual mean
concentrations were calculated based on a limited num-
ber of monthly samples. Great gains in model performance
could be made with improving sampling consistency. The
improvement and harmonization of national hydrological
datasets is one of the focus areas of the European Union
Water Framework Directive (Brack et al., 2017). We hope,
that this will increase the international applicability of ML
models in the near future.

Our models are currently able to model only at the yearly
level and cannot be used for predicting time series. How-
ever, there is potential for a finer temporal scale, provided
there is sufficient input data. In addition to aforemen-
tioned improvements in WQ data, predictors would have
to be adjusted accordingly. Although many of the predic-
tors used in the models can be considered as static (e.g.
elevation, soil), modeling on the seasonal or monthly level
means that certain predictors (e.g. precipitation, tempera-
ture) must be calculated at corresponding intervals as well.
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