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Abstract. Extensive data quality descriptions as a vital
part of a dataset’s metadata are widely accepted, albeit
their provision in a formalized manner is often lacking.
This is due to a number of problems that are frequently en-
countered by geodata producing scientists. As one of these
problems, we identified missing, unknown or unused op-
tions to model inhomogeneity of data quality across space,
time, and theme in a dataset’s metadata. Detailed infor-
mation of inhomogeneous geodata quality beyond dataset-
wide statistical measures (variance, min, max, etc.) is often
only described in dataset accompanying papers or qual-
ity reports. These text-based approaches prevent precise
querying and hinder the development of advanced data dis-
covery tools that could make valuable use of inhomoge-
neous data quality information. We propose a profile for
the data quality vocabulary (DQV)1 that allows to model
inhomogeneous geodata quality. Considering established
vocabularies typically used to describe geographic meta-
data, as well as ensuring compatibility with the default ver-
sion of DQV, enhances the usability and thus, minimizes
the effort for data producers to provide formalized descrip-
tions of inhomogeneous data quality.

Keywords. geodata quality, metadata, linked data,
reusability, DQV

1 Introduction

With the increasing usage of the Findable Accessible
Interoperable Reusable principles (Wilkinson et al., 2016)
in scientific cases, data producers become more and more
aware of providing reusable data. Followingly, a rich de-
scription of the data quality becomes imperative to pre-
vent misuse and to guide the process of data selection.
Up to now, data quality is often described only in the
dataset’s accompanying papers or quality reports (Ariza-
López et al., 2020). A reason for this are insufficient,
unknown and/or unused structures to describe inhomo-

1https://www.w3.org/TR/vocab-dqv/, April 20, 2022

geneous geodata quality in a formalized, data-producer-
friendly manner.

In geospatial data modelling, inhomogeneity of data qual-
ity is often caused by inhomogeneous input data, e.g.,
satellite imagery, governmental statistical data or in-situ
measurements. Running a model with inhomogeneous in-
puts, results in inhomogeneous data quality of the model’s
outputs. For instance, for the dataset Global Forest Change
(Hansen et al., 2013), data quality information is provided
in the supplementary material in the form of text and ta-
bles; where it is disaggregated into different spatial, tem-
poral and thematic scopes, e.g., error of forest loss from
2000 to 2012 in the tropical climate domain (p. 17).

If inhomogeneity of data quality is described in a non-
textual manner, typically one of the following strategies
is applied: 1) producing separate data quality datasets ac-
companying the original dataset (e.g., a raster of Root-
Mean-Square-Errors), or 2) splitting the original dataset
into smaller sub-datasets, so that the data quality is homo-
geneous for each resulting dataset. However, both are not
suitable as a generic strategy: in the first option, the qual-
ity information is not part of the metadata and, e.g., cannot
be used for discovery or evaluation. The second option is
not feasible for every dataset, because measuring differ-
ent quality indicators might require different splits, which
results in spatially overlapping sub-dataset. With our ap-
proach, we contribute to the reduction of the required ef-
fort in reporting inhomogeneous geodata quality in a for-
malized way.

2 Requirements for a Metadata Profile to Model
Inhomogeneity of Data Quality

This section frames requirements for a metadata profile
that facilitates the modelling of inhomogeneous geodata
quality. Our proposed concept serves as a means to enrich
measurement information for any geodata quality indica-
tor with a spatial and/or temporal extent, as well as with a
thematic scope that constrains its validity. This allows to
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measure a certain quality indicator several times, with dif-
ferent spatial, temporal, and/or thematic constraints, and
to describe the results in one metadata set. The constraints
have to be chosen so that the resulting geodata quality
measurement is homogeneous, i.e., the constraints can be
solely spatial, temporal or thematic, or a combination.

Since reuse of geodata happens across domains, interoper-
ability of the constraints’ descriptions is imperative. More-
over, as data producers assess the sufficiency of a mea-
surement’s homogeneity, the structure of the constraints’
descriptions should be highly flexible, e.g., by permitting
and encouraging the use of domain-specific terms that are
properly defined. Consequently, requirement R1 addresses
semantic aspects.

Lacking options to describe inhomogeneous data quality
formally can lead to mixed forms of geodata quality de-
scriptions, i.e., homogeneous data quality information is
part of the metadata, while inhomogeneous aspects are
covered somewhere else. Requirement R2 is split into two
parts, which are both concerned with the completion of
existing descriptions. The first part (R2.1) ensures that
constrained geodata quality descriptions can be added to
existing unconstrained descriptions. In addition, there are
cases where existing data quality measurements are un-
constrained, even if they are not valid dataset-wide. This
can result from missing options to describe inhomoge-
neous data quality. Part 2 (R2.2) ensures that such errors
are correctable.

R1 The constraints that are used to delimit a geodata qual-
ity measurement’s validity should either be described
by 1) proper terms2 that are available in open ontolo-
gies/vocabularies3 or by 2) defining them in estab-
lished open formats.

R2.1 A measurement of a certain geodata quality indica-
tor does not have to be constrained. A dataset’s meta-
data can include constrained and unconstrained mea-
surements of geodata quality measurements.

R2.2 Existing (unconstrained) measurements of geodata
quality in a dataset’s metadata can be enriched with
(a) constraint(s).

The concept should be provided as profile of an existing
data quality framework, which results in requirements on
the framework (encoded using F.R). The framework has
to be suitable to address quality indicators for spatial data
(F.R1). Retroactive integration (see R2) requires that the
profiled version of the framework is compatible with its

2Proper denotes a complete description, i.e., a spatial term
has to include a spatial extent, a temporal term has to include a
temporal extent and thematic terms have to be defined compre-
hensively.

3In this publication, we use ’ontology/vocabulary’ as a term
that comprises vocabularies, taxonomies, gazetteers, thesauri,
ontologies, and any other concept that is used to describe and/or
link terms.

default version (F.R2). Requirement R1 encourages using
open ontologies/vocabularies, rather than defining the spa-
tial, temporal and thematic constraints for each measure-
ment of geodata quality. This can be facilitated by using
technologies from the Semantic Web Stack (F.R3). More-
over, the usability of the framework is crucial. As indicated
by Egli et al. (2021) and Ariza-López et al. (2020), a com-
plex data quality model hinders data producers in (proper)
application (F.R4).

F.R1 The used framework has to provide capabilities to
implement any quality indicator relevant for spatial
data.

F.R2 The profile has to be compatible to the default ver-
sion of the framework.

F.R3 The framework should use technologies of the Se-
mantic Web Stack, whenever possible.

F.R4 The framework’s structure should be as simple as
possible.

3 Review of Existing Quality Frameworks to Model
Data Quality

In this section, we review quality frameworks against the
developed requirements and provide a detailed review for
the two most promising candidates – ISO 191574 and
DQV. In the context of geodata quality, Barsi et al. (2019)
present a data quality framework for remote sensing data
that focuses on error propagation throughout the data life-
cycle. Another framework in this domain is introduced
with the Quality Assurance Framework for Earth Obser-
vation (QA4EO) (Hunt et al., 2021). Moreover, Senaratne
et al. (2017) review literature to assemble quality indi-
cators and according measurement methods to assess the
quality of volunteered geographic information. Focusing
on semantic aspects, the daQ Ontology facilitates describ-
ing the quality of linked datasets (Debattista et al., 2014),
which can be considered influential in the development
of DQV (Albertoni and Isaac (2021), Debattista et al.
(2016)).

The international standard ISO 19157 describes a frame-
work to measure the quality of geographic data and is
designed as a complement to ISO 19115-15, which de-
fines general geographic metadata. Moreover, it comprises
well-defined descriptions of quality indicators for geo-
graphical data that are referred to as data quality elements
(DQ_Element). These data quality elements are grouped
into five distinct categories of geographic data quality and
an additional one to define user-specific data quality el-
ements and thus, fulfill requirement F.R1 (F.R1 3). Fur-
thermore, ISO 19157 comprises a register of evaluation
methods for the different quality elements. However, ISO

4https://www.iso.org/standard/32575.html, April 20, 2022
5https://www.iso.org/standard/53798.html, April 20, 2022
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19157 is not based on concepts of the Semantic Web Stack
(F.R3 7).

ISO 19157 already defines a concept to model in-
homogeneous geodata quality by combining a quality
element with a scope (ISO19115-1:MD_Scope). This
combination is referred to as a data quality unit. A
scope can be constrained spatiotemporally by an extent
(ISO19115-1:EX_Extent), and thematically by a scope
code (ISO19115-1:MD_ScopeCode) or a scope descrip-
tion (ISO19115-1:MD_ScopeDescription).

The spatial extent (ISO19115-5:EX_GeographicalExtent)
can be described by using established formats (see
ISO19115-1:GM_Objects) or by a description (ISO19115-
1:EX_GeographicDescription), which has an identifier
(ISO19115-1:MD_Identifier). This identifier refers to an
object in a namespace, and the namespace can reference
to an ontology/vocabulary by using the online resource
element of the citation class (ISO19115-1:CI_Citation).
The temporal extent (ISO19115-1:EX_TemporalExtent)
can only be provided as value (ISO19108:TM_Primitive).
However, the scope codes that are defined in ISO19115-
1 do not allow to reference terms from an ontol-
ogy/vocabulary - examples in ISO-19157 only constrain
the scope thematically by pointing to feature classes in the
dataset. The scope description class contains a free text
field ("other") that could be used to link to a term, but that
does not allow automated processing like type checking.
In summary, the first requirement is only fulfilled partially
(R1 7) and we do not consider ISO19157 to provide a sim-
ple and easy-to-use structure (F.R4 7).

The Data Quality Vocabulary (DQV) is a semantic
data vocabulary (F.R3 3), designed along the Data Cat-
alog Vocabulary (DCAT)6, to describe a dataset’s quality.
Nonetheless, DQV can also be used independently to de-
scribe the quality of any resource on the Web (Albertoni
and Isaac, 2021). DQV is built upon the three classes cat-
egory, dimension, and metric proposed by Zaveri et al.
(2015). A data quality measurement is performed against
a certain quality metric. This metric is defined in a cer-
tain quality dimension, which belongs to a certain cate-
gory. Thus, the category defines a broad concept of qual-
ity, the dimension further specifies this concept, and the
metric describes options to measure a certain dimension.

The development of DQV is strongly guided by reusing
vocabularies and minimizing ontological commitment
(Best Practices on the Web7 15 and 16) (Albertoni and
Isaac, 2021). DQV provides a generic and extensible con-
cept regarding the definition of domain specific quality in-
dicators, thus guaranteeing options to define any spatial
quality indicator (F.R 1 3).

Albeit DQV cannot model inhomogeneous data quality
yet, we choose DQV for the development of a profile.
One reason for this is that it is a semantic data vocabulary
(F.R3), which in turn simplifies the implementation of re-

6https://www.w3.org/TR/vocab-dcat-3/, April 20, 2022
7https://www.w3.org/TR/dwbp/, April 20, 2022

quirement R1. Further, we consider DQV easier to under-
stand and to apply (F.R4). Moreover, tailoring ISO19157
to fulfill requirement R1 by changing the temporal extent
class, as well as the items of the scope code/scope de-
scription class, would lead to a more complex structure.
The required changes of the scope code/scope description
class would include deleting items, which would lead to
incompatibility with the default version (F.R2 7). In con-
trast, to constrain a geodata quality measurement in DQV,
the RDF node that represents the measurement can simply
be attached with the needed constraints (F.R4 3).

4 Methods: Discussion of Design Choices and
Implementation of the Profile

In this section, we discuss different possibilities to imple-
ment the constraints for a certain quality measurement in
DQV. At first, we provide guidance to choose proper terms
and possible formats (see R1). We then review the RDF
properties that we used to model the constraints and dis-
cuss two implementation options.

Using terms from ontologies/vocabularies is in particu-
lar recommended for thematic constraints, e.g., to en-
sure a common understanding of used terms. An exam-
ple of a well-known vocabulary for agricultural terms is
AGROVOC (Caracciolo et al., 2013). If there is no proper
term available in an existing ontology/vocabulary, com-
prehensive definitions can be implemented with the Sim-
ple Knowledge Organization System (SKOS)8 or with the
Web Ontology Language (OWL)9. Regarding spatial con-
straints, the Marine Regions Gazetteer (Lonneville et al.,
2021) serves as an example to find proper and shared
spatial terms. Commonly known serializations of geodata
are GML10 or WKT11. Finally, concerning temporal con-
straints, we assume that the required periods to tempo-
rally constrain a geodata quality measurement are often
dataset specific, which results in rare occurrences of fea-
sible proper terms. Encodings are available in ISO 860112

or OWL-Time13.

The definition of the RDF properties is guided by the
best practice on re-use of existing vocabulary (see Sec.
3). Consequently, we implement the spatial and tempo-
ral constraints with the Dublin Core (DC) Terms14 spa-

8https://www.w3.org/TR/skos-reference/#, April 20, 2022
9https://de.wikipedia.org/wiki/Web_Ontology_Language,

April 20, 2022
10Geographic Markup Language: https://www.ogc.org/

standards/gml, April 20, 2022
11Well-known text: https://www.ogc.org/standards/wkt-crs,

April 20, 2022
12https://www.iso.org/standard/70907.html, April 20, 2022
13https://www.w3.org/TR/owl-time/, April 20, 2022
14https://www.dublincore.org/specifications/dublin-core/

dcmi-terms/, April 20, 2022
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tial15 and temporal16. Both properties fulfill Requirement
R2. To model the thematic constraint, we defined the prop-
erty thematic. Existing properties, like DCAT’s theme17 or
SKOS’s inScheme18, target whole ontologies/vocabularies,
instead of referencing specific terms that are defined in
an ontology/vocabulary. We recommend encoding spatial
constraints (DCT Locations) with the GeoSPARQL19 on-
tology, temporal constraints (DCT Periods of Time) with
the OWL-Time ontology and thematic constraints with the
SKOS vocabulary.

To constrain a measurement, two implementations are fea-
sible: defining a node that describes the constraints and
that is subsequently attached to the measurement node
(Figure 1 – version 120) or adding the spatial, temporal
and thematic constraints to the measurement node (Figure
1 – version 2).

Figure 1. Two versions to apply spatial, temporal, and thematic
constraints to a DQV quality measurement.

In both cases, the constraints are optionally - if the data
quality is homogeneous, the constraints can simply be left
out. Version 2 only allows reusing terms that are solely
spatial (e.g., Europe), temporal (the 90s) or thematic (for-
est), but not a combination. Whereas Version 1 allows
combinations, but is more complex. An example is the spa-
tiotemporal term ’Little Ice Age’ that can be considered a
phenomenon of the Northern Hemisphere in the time span
from about 1400 to 1850 (Matthews and Briffa, 2005). In

15https://www.dublincore.org/specifications/dublin-core/
dcmi-terms/#spatial, April 20, 2022

16https://www.dublincore.org/specifications/dublin-core/
dcmi-terms/#temporal, April 20, 2022

17https://www.w3.org/TR/vocab-dcat-3/#Property:
resource_theme, April 20, 2022

18https://www.w3.org/2009/08/skos-reference/skos.html#
inScheme, April 20, 2022

19https://www.ogc.org/standards/geosparql, April 20, 2022
20GitHub: https://github.com/rue-a/dqv_inhomogeneity/blob/

master/listing1_implementation_versions.ttl, April 20, 2022

version 2, we have to use two nodes to specify the exam-
ple; one for the spatial extent and one for the temporal
extent of Little Ice Age (see Fig. 3), whereas in version
1, we could simply use one node that holds the definition
of the term ’Little Ice Age’ as constraint (see Fig. 2). A
common problem with these more complex terms is the
co-existence of different domain-specific definitions. Ap-
proaches like ’deep’ and ’broad’ gazetteers21 address this
issue, e.g., by allowing co-existence of terms or fuzzy de-
scriptions (Shaw, 2016). Although definition and reuse of
such more complex terms has potential, currently proper
definitions are missing in ESS. Consequently, we chose
and applied version 2 in our projects, i.a., due to its sim-
plicity. Additionally, the second version is coherent to
the implementation of the spatial and temporal extents of
datasets in (Geo)DCAT.

Figure 2. Little Ice Age - version 1: Little Ice Age is defined as
separate node and includes the spatial and temporal constraint of
the measurement. Its spatial extent is also defined in a separate
node, since Northern Hemisphere serves as a reusable concept.
The temporal constraint is defined inline by using a blank node.

4.1 Data and Software Availability

Both versions of the profile are published as open source
RDF-TTL on GitHub22 together with several examples for
the recommended encodings of the constraints, and an im-

21A definition of the ’Little Ice Age’ in the PeriodO gazetteer:
http://n2t.net/ark:/99152/p0jk4xk2gz6, April 20, 2022

22https://github.com/rue-a/dqv_inhomogeneity, April 20,
2022
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Figure 3. Little Ice Age - version 2: The measurement is pro-
vided with a spatial and temporal extent, which constrain it in
space and time.

plementation for the Global Forest Change dataset (see
Sec. 1).

The quality information of the Global Forest Change
dataset is published in the supplementary material23 of
Hansen et al. (2013).

5 Conclusion and Future Work

Data quality information that shows an inhomogeneous
distribution across a dataset is seldom part of the dataset’s
metadata. Our proposed DQV profile focuses on reducing
the required effort for data producers to integrate this in-
formation in the metadata by proposing an implementation
that (1) reuses known vocabularies, (2) only defines one
additional RDF property, (3) aligns the profile’s structure
with DCAT and GeoDCAT, and (4) ensures the compati-
bility with the default version of DQV.

With our profile implementation and the developed exam-
ples, we show a proof-of-concept. Moreover, we identified
several use cases for the profile as future work.

For instance, when using the profile for discovery, e.g. in
metadata catalogs, it enables data users to formulate pre-
cise queries on a sub-dataset level of detail, thus facilitat-
ing a dataset’s proper use. It furthermore fosters the de-
velopment of advanced metadata/data quality analysis ap-
plications, like for accessing precise geodata quality infor-

23https://www.science.org/doi/suppl/10.1126/science.
1244693/suppl_file/hansen.sm.pdf, April 20, 2022

mation via a metadata catalog’s API and directly utilizing
it in data processing workflows.

Moreover, using a semantic data approach allows for
seamless integration with other linked data concepts, thus
encouraging novel developments. An example is the inter-
section with the provenance ontology PROV-O24, which
bears rich automation potential. Inhomogeneity in the data
quality often results from inhomogeneous input data (see
Sec. 1); by leveraging provenance information, the spatial,
temporal, and/or thematic boundaries of input datasets can
be traversed along the provenance graph to automatically
derive constraints for data quality measurements in the
output dataset, which in turn opens up possibilities to au-
tomatically apply meaningful data quality measurements.

Furthermore, the implementation of the example dataset
’Global Forest Change’25 with our profile, exposed the
benefits of using proper terms. Both in the publication and
the supplementary material of the dataset, the authors re-
fer to the used spatial extents as ’FAO climate domains’.
With that, they mean the FAO Global Ecological Zones
(GEZ) in the version of 2010. In the example, we imple-
ment the tropical, subtropical, temperate and boreal zones
as reusable (and therefore referenceable) terms.

Generally, the application of the profile in conjunc-
tion with concepts like provenance, thematic vocabular-
ies or essential (land use) variables26 contributes to new
prospects for knowledge modelling and gaining.
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