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Abstract. In recent years, deep learning has quickly
evolved to be the go-to solution for any kind of analysis of
non-linear data. One such use has been that of Generative
Adversarial Networks (GAN) in the field of Computer Vi-
sion. GAN models have a variety of applications for image
processing, specifically, super-resolution of images. A lot
of work has been done to enhance or upscale generic RGB
imagery such as the ones taken from a mobile or digital
camera. However, in the field of remote sensing, it presents
challenges like preserving the spatial resolution of the sen-
sor, which is affected by a wider pixel value range and re-
lation of a pixel to ground sampling distance (GSD). From
data preparation to enhancing a complete set of tiles at
scale, the upsampling/downsampling requires the ratio of
number pixels to the actual area in geography to be pre-
served. SRGAN model has been proven to be effective for
interpolating the pixels based on context. However, it was
observed that the same algorithm with or without param-
eter tuning behaves differently based on the sensor source
and target resolution. We evaluate the performance of the
model from 10m to 2.5m and 2.4m to 0.6m resolution. The
comparison will enable better decision making when using
the enhanced images for LULC classification, segmenta-
tion, and object detection.
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1 Introduction

Several applications have been developed in the remote-
sensing domain using the Sentinel-2 as a data source, pri-
marily because of its open-use policy, specifically in the
area of vegetation analysis. Due to the high presence of
mixed-pixels in Sentinel-2 products especially for the ur-
ban regions, the 10m (RGB) resolution does not provide
enough spatial variability/information as urban use-cases
are dependent on the size of the object (Rabbi et al., 2020),

(Zhang et al., 2021) such as that of buildings, roads, rail-
way tracks, and any similar man-made structures.

With the support of major advancements in the deep learn-
ing space, several image enhancement algorithms (Wang
et al., 2020) have been developed both for traditional RGB
and satellite images. The algorithms are mostly supported
by CNN (Convolutional Neural Networks) algorithms.
Unlike traditional image upsampling techniques like bi-
cubic, bilinear, or nearest neighbors, these algorithms per-
form calculations that do not consider the context of the
objects in the image and neither have a ground truth ref-
erence to improve its efficiency. Deep learning algorithms
overcome these common pitfalls by making an algorithm
learn the different kinds of objects in the image like their
texture, contrast, placement in the image, and their pixel
values or Digital Number (DN) in the context of satellite
imagery. Inspired by CNNs, multiple architectures of these
algorithms (Shermeyer and Etten, 2019) have been pro-
posed to enhance the resolution of satellite imagery where
a similar observation was made stating that resolution en-
hancement might not be as effective in coarser resolutions.
Some researchers have taken it one step further and used
the concept of GANs (Generative Adversarial Network)
(Ma et al., 2019) which tries to generate a similar copy
of ground truth data, which in this case would be high
resolution (HR) images. SRGAN, Edge-Enhanced GAN
(Jiang et al., 2019), Ultra-Dense GANs are some of the
commonly used GAN architectures used for resolution en-
hancement.

For achieving 6x and 2x upsampling the idea proposed in
(Lanaras et al., 2018) is to first perform downsampling,
specifically, the 60m bands by 6 times to 360m and the
20m bands to 40m. However, this approach suffers a ma-
jor drawback because this algorithm enhances only the
non-RGB bands but in fact, it uses the spatial information
from the RGB bands since they are at 10m as compared to
the remaining bands of 20m and 60m. Hence, it is highly
dependent on providing a high-resolution reference image
that might not exist for other sensors.
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In our work, we not only explore how an SRGAN (Ledig
et al., 2017) algorithm behaves if we change the source
and target resolution but also propose a modified version
of SRGAN where the loss functions can handle pixel val-
ues beyond 0-255. Two experiments, each for RGB bands
across different sensors with multiple iterations are per-
formed for a target resolution of 2.4m and 0.6m, from 10m
and 2m respectively. The resulting enhanced images can
then be used as input for further classification or segmenta-
tion and a comparison could be drawn to which enhanced
imagery may be ideal for what kind of further analysis.

The extensive validation and performance of the SRGAN
algorithm through the years for computer vision motivated
us to use it for our experimental work. The work also ac-
counts for the radiometric resolution of the sensors in use
as it is important to preserve the reflectance values of the
captured imagery to avoid any information loss. The pa-
per is organized as follows: We initially discuss the data
preparation methodology used to train the SRGAN model
and briefly introduce the algorithm’s working. Finally, we
discuss the results achieved and how future improvements
can be introduced to make the algorithm fine-tuned toward
satellite datasets.

2 Data And Methods

Pleiades - 0.5m | HR

Georeferencing

SPOT 7 - 1.5m | LR

Downsample To 0.6m Downsample To 2.4m

Crop For Dimensions

(Factor of 128)
Crop For Dimensions

(Factor of 32)

Create Smaller

Chunks

Augment Chunks and Train

Figure 1. Flowchart showing data preparation steps for Dataset
2. A similar approach was taken for Dataset 1

2.1 Data Preparation

The methodology to prepare traditional RGB imagery dif-
fers from how it is done for satellite images, majorly be-
cause when the input size for a deep learning algorithm
like CNN is fixed, for eg (512 x 512 x 3), we can simply
resize the image to this dimension and because of the small
pixel-value ranges of 0-255, the newly averaged values
do not change drastically. On the other hand, the remote-
sensing images are firstly geo-referenced. Secondly, resiz-
ing may result in drastic changes in pixel values because of
the wider byte range of satellite images. For eg, the pixel
value in Sentinel-2A has 16-bit range as compared to 8-bit
of traditional RGB. On doing averaging, the pixel value
could signify a major change and hence affect the infer-
ence of outputs. In the experiment, we’ve set up two dif-
ferent test cases:

1. 10m to 2.5m: Dataset 1

• Low-Resolution Data: Sentinel-2 10m RGB imagery
for a region near Bangalore, India

• High-Resolution Data: Digital Globe imagery for the
same region in South-India, available at 2.5m

2. 2.4m to 0.6m: Dataset 2

• Low-Resolution Data: SPOT-7 imagery at 1.5m,
downsampled to 2.4m for an area in Saudi Arabia

• High-Resolution Data: Pleiades imagery available at
0.5m, for the same area in Saudi Arabia

An important step here to be considered is how do we
downsample 0.6m tiles to 2.4m to make it appropriate
for 4x upsampling from 10m. We are to extract multi-
ple 128x128 size tiles from the original HR tile, however,
while extracting the corresponding LR tiles (32x32), we
need to make sure the two tiles are perfectly georefer-
enced. A visual representation of steps can be seen in Fig-
ure 1.

The following Figure 2. shows the relation of pixels be-
tween a 2x2 tile and its corresponding 4x upsampled, 8x8
tile. We cannot directly resize images to 32x32 and/or
128x128 as this would affect the spatial properties. The
ideal way is to crop a section from the original tile that has
dimensions of factors 128 and 32. This way the pixel rela-
tion is maintained and the model can learn how to upsam-
ple a single pixel 4 times. Finally, we were able to generate
thousands of samples using augmentation by flipping and
rotating the images. The total amount of training data is
shown in Table 1.

The number of files for both the test cases was kept the
same to nullify the advantage of having excess data in ei-
ther of the cases and for better comparison of the metrics.
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Figure 2. Pixel mapping from 2x2 LR Image to 4x Upscaled
(HR) 8x8 image

Table 1. Training Data Specifications

10m to 2.5m 2.4m to 0.6m

Train 940 940
Val 100 100
Test 100 100

2.2 Time Difference of Acquisition

The change in the image structure and pixel values should
be minimal between the two source and target images. In
the case where there are significant structural changes in
the two images, the training would incorrectly learn the
wrong features and eventually generate artificial objects
in the outputs. For this reason, it was important to re-
duce the acquisition time between the two sensors. For our
SPOT/Pleiades dataset, the time difference is of 25 days
while for the Sentinel-2/Digital Globe dataset it is 30 days.
All the acquisitions were made in the year 2021.

2.3 Model Training

The SRGAN model proposed involves a two-step training
workflow. Firstly, the SRResnet model is trained with the
intention of reducing the MSE loss, however, the metrics
PSNR (Peak Signal to Noise Ratio) and SSIM (Structural
Similarity) are also tracked. This pre-training phase of the
two-step stacked model (SRResnet + SRGAN) helps in re-
ducing the number of iterations needed for the SRGAN
and proves to be a good starting point with some of the
features already learned by optimizing for MSE loss.

On the other hand, MSE loss does not accurately repre-
sent the image texture changes that may happen at the
pixel level. A pixel can be represented in several different
combinations in the high-resolution image, MSE loss will
usually output an average of all these combinations which
may be unrealistic as compared to the ground truth. To set-
tle this, the original SRGAN model used here is based on
a VGG loss which is obtained by calculating the euclidean
distance between pre-trained feature maps from the VGG-
19 model.

Another modification of this SRGAN model was pub-
lished (https://github.com/xinntao/BasicSR) by removing
the Batch Normalization layers from the model architec-
ture because it tended to produce artifacts in the outputs.

2.4 Loss Modification

It is important to note that any model architecture is only
as good as the metric functions that it should ultimately
improve. In the case of satellite images where the pixel
values can go beyond 0-255, the current loss functions
were required to be modified in our work to compensate
for the higher range of values or reflectance from 0 to 1.
In the equation of PSNR, where a higher value represents
a higher quality of reconstructed image. This is usually
computed is decibals as it is a measure of noise in signals.
The MSE of the reconstructed image and the target image
is first computed and provided as input to the following
equation, where we use the maximum possible value of
reflectance i.e. 1.

PSNR= 20 ∗ log10(1./sqrt(mse))

3 Results And Discussion

3.1 SRResNet

Multiple testing scenarios were created to observe what
kind of variables trigger the model to give the best and
worst metrics, moreover to analyze if the model performs
consistently across changing parameters. Table 2 and Ta-
ble 3 show the 9 test cases that were run using the SRRes-
Net model for the two datasets 10m to 2.5m and 2.4m to
0.6m respectively. Figure 3. and Figure 5. represent the
SRResNet performance for learning rate of 0.00003. It
can be observed that there is no significant change in the
PSNR/SSIM metrics across any of the test cases, mean-
ing the quality of data outweighs the quality of parameter
tuning.

Our observations from this dataset are further verified by
looking at the metrics of the SRResNet model for the sec-
ond dataset (2.4m to 0.6m). We see a similar trend of con-
sistent PSNR/SSIM values and the effect of learning rates.
The major takeaway here is that providing a higher base
resolution (2.4m low-resolution data as compared to 10m)
automatically gives the model a better understanding of
the data in terms of texture/context which is why we see
an increase of around 20 percent in the SSIM values (Two
copies of the same image will have an SSIM of 1).

Table 2. Metrics: Sentinel 2 - 10m to Digital Globe 2.5m (SR-
ResNet)

Feat. Iterations Best Iter. LR PSNR SSIM
T1 64 100K 20K 0.0001 29.662 0.7062
T2 64 100K 10K 0.0002 29.642 0.7060
T3 32 100K 50K 0.0001 29.900 0.7091
T4 32 100K 20K 0.0002 29.792 0.7067
T5 16 100K 80K 0.0001 29.935 0.7075
T6 16 100K 50K 0.0002 29.952 0.7080
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Table 3. Metrics: SPOT 7 - 2.4m to Pleadis 0.6m (SRResNet)

Feat. Iterations Best Iter. LR PSNR SSIM
T1 64 100K 5K 0.0001 39.323 0.929
T2 64 100K 5K 0.0002 39.313 0.929
T3 32 100K 20K 0.0001 39.389 0.929
T4 32 100K 10K 0.0002 39.316 0.928
T5 16 100K 35K 0.0001 39.469 0.929
T6 16 100K 10K 0.0002 39.372 0.929

Figure 3. Sentinel-2/DG, SRResNet performance for learning
rate of 0.0003, top to bottom for feature 16, 32 and 64

3.2 SRGAN

For models trained using GAN loss, PSNR should not be
used as an evaluation metric as it may not align with hu-
man judgment. Similar to that in SRResnet, a similar pat-
tern for the SRGAN performance across the two datasets is
observed. Given a better base resolution, the SRGAN per-
formed consistently better across the test cases. SRGAN
has been more sensitive to parameter tuning as a result of
which we observed the varying metrics.

We also see a drop in SSIM metrics across both datasets
which is because of the algorithm’s nature to mimic the
target imagery, creating unwanted artifacts in the gener-
ated images. Table 4 and Table 5 show the 9 test cases that
were run using the SRGAN model for the two datasets
10m to 2.5m and 2.4m to 0.6m respectively. Figure 4. and
Figure 6. represent the SRGAN performance for learning

Figure 4. Sentinel-2/DG, SRGAN performance for learning rate
of 0.0003, top to bottom for feature 16, 32 and 64

rate of 0.00003. The final results from the SRGAN model
can be seen in the Figures 7. to 10.

Table 4. Sentinel 2 - 10m to Digital Globe 2.5m (SRGAN)

Feat. Iterations Best Iter. LR PSNR SSIM
T1 64 80K 55K 0.0001 27.23 0.6022
T2 64 50K 5K 0.0002 23.157 0.4968
T3 32 50K 5K 0.0001 25.428 0.534
T4 32 100K 10K 0.0003 25.08 0.457
T5 16 100K 40K 0.0002 26.588 0.5575
T6 16 100K 30K 0.0003 26.718 0.5739

Table 5. SPOT 7 - 2.4m to Pleadis 0.6m (SRGAN)

Feat. Iterations Best Iter. LR PSNR SSIM
T1 64 100K 40K 0.0001 37.177 0.8852
T2 64 50K 40K 0.0002 37.45 0.8931
T3 32 100K 5K 0.0001 36.721 0.8798
T4 32 50K 5K 0.0002 36.447 0.8889
T5 16 100K 5K 0.0001 36.981 0.8883
T6 16 100K 5K 0.0002 36.488 0.8638
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Figure 5. SPOT/Pleadis, SRResNet performance for learning
rate of 0.0003, top to bottom for feature 16, 32 and 64

4 Conclusions and Future Work

In this work, we observed how the GAN algorithms are
hugely influenced by the resolution of the data provided.
An increase of 54 percent was seen in the SSIM metric
by providing a higher base resolution. GAN models how-
ever tough to train can learn features quickly with mini-
mum training. Modification of loss functions also helped
in retaining reflectance values which can later be converted
to DN numbers if needed. Additionally, the colors of the
lower resolution images were also preserved with slight
changes in the contrast of images which is possible due
to the images being taken at different times which makes
it harder to have the right dataset for satellite resolution
enhancement.

The model however struggles to enhance or understand
small buildings or objects, especially when they are
present in a cluster, the shadows and roads being mostly
black often get confused in the case of Sentinel-2 enhance-
ment. Another major improvement that can be made is
in the form of replacing the VGG-19 feature maps which
were trained on traditional RGB imagery where the pixel
values lie in the range of 0-255. By training a new VGG
model for satellite imagery, the GAN models will be able
to understand the dynamic range of pixel values and con-
text much more efficiently and can also reduce the chances

Figure 6. SPOT/Pleadis, SRGAN performance for learning rate
of 0.0003, top to bottom for feature 16, 32 and 64

Figure 7. Location 1, Results for Sentinel-2/DG, left to right
(clockwise), low-resolution image at 10m, SRGAN Output at
2.4m, Original high-resolution at 2.4m

of overfitting when the dataset is small. Finally, a change-
detection preprocess could also be carried out between the
source/target imagery to ensure that only similar pixels are
enhanced.
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Figure 8. Location 2, Results for Sentinel-2/DG, left to right
(clockwise), low-resolution image at 10m, SRGAN Output at
2.4m, Original high-resolution at 2.4m

Figure 9. Location 3, Results for SPOT/Pleadis, left to right
(clockwise), low-resolution image at 2.4m, SRGAN Output at
0.6m, Original high-resolution at 0.6m

Data and Software Availability

The data and code are made accessible through our GitHub
repository found here.
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