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Abstract. As part of AMADEE-20, an integrated Mars
analog field mission in the Negev Desert in Israel con-
ducted by the Austrian Space Forum, an exploration cas-
cade for the remote sensing of extraterrestrial terrain was
implemented. For this purpose, aerial robots were concep-
tualized, which were used in an iterative process to gen-
erate a navigational map for an autonomous ground vehi-
cle. This work presents the process for generating naviga-
tion maps using multiple aerial image sources from satel-
lites as well as from low orbiting aerial vehicles. First,
Deep Learning methods are used to analyze a high alti-
tude aerial images of a large area, creating a basis map for
mission planning and navigation. Second, high resolution
unmanned aerial vehicle (UAV) images were recorded on
low altitude for a pre-defined area of interest, processed
with Deep-Learning and Structure from Motion and used
to update the basis map. This approach results in a high
accuracy navigation map for autonomous, off-road robot
navigation. Experiments during the AMADEE-20 mission
in the Israeli Negev Desert validated the proposed meth-
ods by sending an autonomous ground vehicle through the
environment using the generated map.

Keywords. remote sensing, deep learning, robotics,
GeoAI

1 Introduction

The Mars Analog Research Mission (AMADEE) 2020, or-
ganized by Austrian Space Forum (OeWF) in cooperation
with the Israel Space Agency, elaborated on an operational
workflow for the exploration cascade of a future Mars mis-
sion, using robotic systems and remote sensing. The mis-
sion took place in October 2021 and was conducted in
the Ramon Crater, Negev Desert in Israel. For the explo-
ration cascade, aerial imagery is used to generate a naviga-
tion map in an iterative process which can be used by au-

tonomous ground vehicles (AGVs) for global navigation
and ground exploration. This work presents the iterative
process to generate a navigational map for AGVs using
aerial imagery retrieved from different altitudes and with
different resolution.

The remainder of this paper is structured as follows. In
the first section, the importance of Mars analog research
is contextualized, and the role of Geosciences for the ex-
ploration of Mars described. This is followed by the ex-
ploration cascade of the AMADEE-20 mission, the prepa-
ration, and classification of the aerial images during the
mission, followed by the creation of the navigational map.
Concluding, the experiments conducted during the mis-
sion and future research topics are discussed.

1.1 Mars Analog Research

Terrestrial analog research missions provide the opportu-
nity to test space exploration missions directly in the field,
i.e equipment, strategies/procedures, and human behav-
ior. They are an established tool applied in NASA’s D-
RATS and HI-SEAS missions, as well as the European
MOONWALK and PANGEA projects, and an essential
part of space exploration. Human-robotic Mars missions
are likely to be launched within the next 2 to 3 decades
and will include surface missions with at least 1 month in
duration (Groemer and Ozdemir, 2020).

Using the keyword “Mars analog research” in Google
Scholar yields 1,620 results up to the year 2010. This num-
ber is increased to 4,730 when applying the same search up
to the year 2021. The Austrian Space Forum (OeWF) has
conducted 12 Mars analog field campaigns from 2006 to
2018 (Groemer and Ozdemir, 2020).
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1.2 AMADEE-20 Exploration Cascade

The “Exploration Cascade” (EC) is a term used by OeWF
for tactically optimizing scientific procedures for pursuing
a predefined scientific question. The strategic aims may
be set before the flight mission architecture development
(Groemer and Ozdemir, 2020).

Scientific operations in multidisciplinary campaigns
present challenges in the coordination workflows. The
workflow defines when and where to deploy instruments,
and when the data are to be expected to arrive at the
Mission Support Center on Earth. Of particular inter-
est is the question of how quick data processing can
lead to knowledge that influences decision-making of the
flight planners. The EC was first demonstrated during the
AMADEE-18 field campaign in Oman Groemer et al.
(2020) and was now further researched in AMADEE-20.
During AMADEE-20 the EC with the experiments therein,
aims to study the geology of the analog site by investi-
gating geological samples and their composition. These
results shall provide insights into geomorphological pro-
cesses, whether aqueous formations have been present and
what forms of life could have dominated during different
periods of time.

The planning and control of the AMADEE-20 mission in-
cluding the exploration cascade is performed by the Re-
mote Science Support (RSS) Team of the OeWF, which
is part of the Mission Support Center (MSC) located in
Innsbruck/Austria. The RSS tasks include the tactical se-
quence of instrument deployment (i.e. spatial and temporal
question in relation to the location of pre-defined regions
of interest). The deployment, performed by human analog
astronauts, is scheduled in the daily and mission support
activities.

2 Semantic Segmentation of Aerial Images

Exploration of the Martian surface requires identifying in-
teresting locations based on satellite reconnaissance. This
task is the basis for mission planning, which includes de-
tailed navigational planning for the mobile robotic plat-
form. Convolutional Neural Networks (CNN) with a U-
NET architecture (Ronneberger et al., 2015) are trained on
a high resolution orthoscopic image of the mission envi-
ronment to determine the traversability of the ground for
the rover. The parameters for this analysis include obsta-
cles as well as rims, tracks, and roads. For the AMADEE-
20 mission area, bushes, buildings, boulders, and bodies
of water are identified and classified as non-traversable
for the rover, whereas roads and homogeneous terrain are
suitable for rover movement. The objective is, to gener-
ate a map of the area, that provides navigational informa-
tion including slope as well as a detailed surface model of
the area. Hence, this provides accurate terrain information
concerning the suitability for the movement of the rover.

Two Models are used for the segmentation. The first model
was trained on larger features (macro-features), in order
to extract larger rock formation and river beds. The sec-
ond one (micro-features), was designated to detect small
obstacles, like bushes and boulders as well as water bod-
ies, tracks, and roads. Bushes and water bodies, roads and
gravel roads represent obstacles, not present on the Mar-
tian surface, but due to their considerable influence on the
navigation in the test area, they need to be included as well.

Before the mission start, a map of the test area is produced
using the low-resolution, aerial images and elevation data,
which are provided before the mission start. The generated
low-resolution map is used for global route planning be-
fore the mission. During the experiments, aerial images of
the test area in the vicinity of the planned route were taken
by a UAV to produce a high-resolution, up-to-date map
for the driving mission of the rover. The process used to
generate the maps is shown in Figure 1. In both maps, the
features derived from the neural networks are combined
with elevation data. The macro-feature model was only de-
ployed for the low-resolution map, while the micro-feature
model was also combined with the high-resolution data.
The detected obstacles were integrated with obstacles de-
rived from a normalized difference surface model.

As depicted in the process defined in Figure 1, the in-
formation derived from the neural networks is combined
with elevation data and standard-deviation filtered images
to generate two navigational maps, on two resolution lev-
els.

2.1 Convolutional Neural Networks

Deep Convolutional Neural models roughly mimic the na-
ture of mammalian visual cortex, and by are the most
promising for visual tasks (Ciresan et al., 2011). CNN is
superior to other deep network algorithms due to its ability
to preserve the geometry of the image (i.e. the 2-D format)
while maintaining the interconnection between pixels and
spatial information (Rezaee et al., 2018).

In CNN’s, Filters are used to extract localized features
from an input image. The filter outputs are repeatedly sub-
sampled and re-filtered resulting in a deep feed-forward
network architecture in which the output feature vectors
are eventually classified. These filters are randomly ini-
tialized and changed in a supervised way using back-
propagation (Ciresan et al., 2011).

The filters are followed by a so-called pooling layer, that
reduces the size of data, and it preserve the most impor-
tant information, such as the geometry of the input data.
In each pooling layer, a particular number is determined
by subsampling, such as using maximum value or linar
combination (Ciresan et al., 2011; Lee et al., 2016).

Inside a CNN, images are transformed into a sequence
of increasingly abstract representations. The deeper one
descends into this hierarchy, the spatial resolution of
the representation decreases while the diversity of fea-
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Figure 1. Process to produce navigational maps from aerial images. The low-resolution navigation map can be used for pre-mission
route planning. The high resolution map is generated from UAV footage, and provides accurate and up-to-date information for the
driving experiments.

tures and their invariance to transformation increase. This
way, CNN’s learn contextual features at different scales
(Behnke, 2003).

CNNs are often used in classification tasks, that classify
the image in a single class label. U-NET’s (utilized in this
particular work) are designed for biomedical image pro-
cessing, and require the localization of a label, i.e., every
pixel in the output image should be assigned a label (Ron-
neberger et al., 2015).

Labeling is also a recurrent problem in remote sensing
(Maggiori et al., 2016). As Maggiori et al. (2016) and
Rezaee et al. (2018) successfully show, CNNs can be uti-
lized for the classification of satellite imagery. For the
classification of complex wetlands, Rezaee et al. (2018)
demonstrate that CNNs can have a better classification per-
formance than Random Forest, even with a pixel resolu-
tion of 5m.

2.2 Model Architecture

U-NET was designed with limited amounts of labeled
sample-data in mind (Ronneberger et al., 2015). Thus min-
imizing the work of labeling data manually. The network
architecture consists of a contracting path, down-sampling
the input, while increasing the feature channels, and an up-
sampling path that reduces the feature-channels while in-
creasing the spatial resolution (Ronneberger et al., 2015).

Both the macro- and micro-feature models followed the
same architecture. The model was implemented using
the Keras and TensorFlow Python libraries. The macro-
feature model uses an input size of 512x512 pixel, while
the micro-feature model uses 128×128 pixel. The down-
sampling path of the model consists of two 3×3 convolu-
tions followed by a rectified linear unit (ReLU) and a max

pooling layer with a stride of 2. This schema (convolution-
block) is repeated 5 times with an increasing size of feature
channels. The 16 filter channels at the start, are increased
in increments of multiples of two, until a maximum of 256
channels is reached. The up-sampling path, consists of a
transposed convolution layer followed by the concatena-
tion of the corresponding output from a previous down-
sampling convolution block, in order to consider features
from multiple layers. This is followed by two 3×3 convo-
lution and ReLU. This schema is repeated five times.

2.3 Training

For the training of the macro-feature model, 147 represen-
tative samples of size 512x512 pixels have been labeled
manually using conventional GIS-methods. Similarly, the
micro-feature model - with a sample size of 736 images,
each 128×128 pixels - was labeled manually. Figure 2
shows samples used to train the models. The location of
the samples are chosen with respect to the occurrence of
features.

The macro-feature model uses 118 samples for training
and 29 samples for validation, for the micro-feature model
589 samples are used for training and 147 for valida-
tion. The number of samples in the micro-feature model
is higher because the included features require greater ac-
curacy of the model for navigation purposes of the rover.
While rough terrain and river basins are important for
global route planning, the detection of micro-features is
of immediate importance for the local scope of the driving
experiments. For example, a dry riverbed can be traversed
by the rover but should generally be avoided, while a large
boulder should always be avoided.
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Figure 2. Samples for the training of the macro-feature model
(left), the green rectangles denote the extent of the sample while
red areas show flow paths and orange areas rough/rocky terrain.
The samples for the micro-feature model (right), this includes
boulders (red) as well as bushes (orange), gravel roads (dark
green) and vehicles (blue). Vehicles were detected to later re-
move them from roads.

The input data is augmented with a random flip around
the horizontal axis and a random brightness adjustment to
avoid overfitting.

Figure 3. Model performance of the macro-feature model.

Figure 4. Model performance of the micro-feature model.

Training on both the macro- and micro-feature models is
done for 250 epochs, the macro-feature model achieves an
accuracy of 0.9443 on the training dataset and an accuracy
of 0.8920 on the validation dataset.

The micro-feature model is trained for 250 Epochs and
reaches a maximum accuracy of 0.9284 on the training
dataset and 0.8936 on the validation dataset (see figure 4).
A visual interpretation, depicted in Figure 6, shows that the

class of gravel roads contains the largest false-positives by
area.

2.4 Prediction

The orthoscopic image of the AMADEE-20 mission area
has a size of 250002 pixels. To classify every pixel with the
trained models, the classification is done with overlapping
tiles with the same size as the training images.

The macro-scale model (see Figure 5) shows problems in
distinguishing between river basins and large stone fields
terrain. It is assumed, that this is because of a similar tex-
ture that both display. A higher number of training samples
could have improved the quality, but due to time restric-
tions before the mission, it was not possible to evaluate
on this hypothesis. Nonetheless, numerous non-traversable
areas are identified. The pixels identified as flow paths and
rocky terrain areas are joined as “rough terrain”.

Figure 5. Flow paths and rocky terrain detected by the macro-
feature model. The model has difficulties distinguishing between
both features.

The micro-feature model (Figure 6) successfully identi-
fies roads, boulders, water bodies and bushes. The sep-
aration of gravel roads from the barren land in Ramon
Crater proves difficult for the CNN, as colors and textures
of roads exhibit a low variability, challenging detection by
the model in specific geographic regions. For further pro-
cessing, the gravel roads need to be extracted manually.

2.5 Additional Information

In addition to semantic segmentation, a standard-deviation
kernel-filter (Figure 7) with a size of 5×5 pixels was ap-
plied to the existing orthoscopic image. This method es-
timates the heterogeneity of an area. The reason behind
this is, that areas with a high variance in the image pro-
vide evidence, that obstacles - like groups of boulders and
rocky terrain - exist. While this method does not identify
the objects on the ground, it still provides useful informa-
tion and proves successful in identifying areas that should
be avoided by the rover – due to their low suitability for
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Figure 6. Features identified by the micro-feature model, asphalt
roads (red), boulders (blue) and bushes (green) showed adequate
accuracy in the classification while gravel roads shows poor per-
formance.

navigation. A digital elevation model is used to calculate
a slope raster image, where pixels with a value larger than
20 degrees of inclination are flagged as non-traversable by
the rover.

Figure 7. The area around the base area (left), the same area
processed with a standard-deviation filter (5x5 pixels). The edges
clearly show obstacles that can not be traversed by the robot.

2.6 Lower Altitude UAV Data

Another critical part of the EC tool chain is the deploy-
ment of UAVs in lower altitude, to obtain more details of
the area of interest. While higher altitude missions pro-
vide an overview of the entire area at low resolution, high-
resolution images are created with the low-altitude flights.
In addition, specific zones, that are of special interest, re-
quire ego-motion free images and close up views.

For the EC in AMADEE-20, a UAV was chosen which
features a high-resolution camera in the visual spectrum,
and an Inertial Measurement Unit (IMU). Both sensors
are used as input for visual-inertia algorithms to guide the
aerial vehicle autonomously from start to destination, in-
cluding take-off and landing following the provided ex-
ploration path. Lower altitude imagery was done by the
AEROSCAN UAV experiment which aims to design, man-
ufacture and test an autonomous (dawn-sunset flight time)

solar-powered, convertible vertical take off and landing
UAV, that carries cameras and a range of atmospheric sen-
sors.

For a specific area of interest, the UAV is used to take 230
images of an approximately 450m by 500m area. With
the we reconstruct the surface using structure from mo-
tion. The software Agisoft Metashape calculates a point
cloud, a high-resolution surface model and and ortho-
graphic imagery from the collected image data (see Fig-
ure 8). The Progressive Morphological Filter developed by
Keqi Zhang et al. (2003) helps to classify the point cloud
into ground and none ground, allowing for further obstacle
detection. Although this filter was developed with LiDAR
data in mind, descent results could be achieved with the
structure from motion data (Figure 8 - ground andoObsta-
cles). After filtering, we calculate an elevation model with
the obtained ground-points. The surface and the elevation
model are subtracted from each other to obtain a raster
map, that represents obstacles for the rover. The elevation
model is utilized to compute the slope of the terrain.

Additionally, the micro-feature CNN gets tested on the or-
thoscopic image generated from the UAV image data. As
seen in Figure 9, numerous obstacles can be identified,
and a combination with the structure from motion data,
resulted in a detailed map of obstacles. These obstacles
are combined with the slope and standard-deviation in or-
der to generate a navigational map for the mobile robotic
platform (Figure 10).

Figure 8. Three different maps created with structure from mo-
tion - the digital surface model (denoted as Surface), the digital
terrain model (denoted as Ground), and the obstacles detected by
subtracting the elevation model from the surface model.

2.7 Data and Software Availability

The training data and the software developed, are
available on Github: https://github.com/raphi-web/
AMADEE20-GeoAI/. Unfortunately, the full size ortho-
scopic image cannot be provided on Github, due to legal
restrictions.

3 Creation of the Navigation Map

The objective of the navigation map is, to provide a
detailed map of the area’s traversability for the mobile
robotic platform. This is done by converting the informa-
tion from the navigation map directly into costs, so that
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Figure 9. Navigational parameters detected by the micro-feature
model. The background image is the orthographic image gener-
ated with structure from motion.

they can be used to find the optimal route between two
points Stentz (1997). The resulting cost map serves as ba-
sis for path planning in the project.

The navigational map (Figure 10) is represented by a sin-
gle band raster image with a resolution of 0.5m per pixel
and integer values ranging from 0 to 255. Value 0 denotes
the lowest possible cost to traverse a pixel, e.g., the highest
traceability, while the values larger than 114 denote non-
traversable obstacles. Pixels that form paths are assigned
the lowest values in the range from from 0-20 - with rep-
resents the slope of the pixel. Values from 21 to 114 repre-
sent offroad areas, these values were created by normaliz-
ing the slope and the standard-deviation raster between 0
and 1, adding both together and rescaling the result to the
aforementioned interval. Both the data sets a) the large-
extent orthographic image and b) the high-resolution UAV
data are processed independently of another, resulting in
two cost maps. They are merged to provide a detailed map
for the field trial. Figure 10 shows an excerpt of the used
cost map for navigation.

The mobile robot uses the cost map as the basis for the
A* algorithm Hart et al. (1968) in order to find the short-
est path to the destination point. The result of the planning
component is a low-resolution path, provides a coarse di-
rection to the desired target. This coarse resolution path
is not continuously updated, only re-planned on request,
as the calculation of long paths (up to 2 km on a 25 km2

map) is a resource intensive task. Local navigation is used
to consider the robot’s surroundings, and kinematic con-
straints. As the resolution of the base map is rather poor
(0.5m) for precise navigation, an internal 3D representa-
tion of the environment with a higher resolution (0.05m)
is created using 3D LiDAR scanners and stereo cameras.
These sensors constantly map the robot’s surroundings to
identify traversable areas in detail.

The computational cost of the calculations are as follows.
The computational environment consists of a PC with an
i5-10400 Hexacore with 2.9 GHz with 16GB RAM. The

Figure 10. Navigational Map for the base station perimeter. The
map is a fusion of the navigation parameters detected via GeoAI
and structure from motion

graphic processor is NVIDIA RTX 360 with 12GB mem-
ory. The running time for training the micro-feature model
took 12min 35sec. The classification of the orthoscopic
image took 1h 12min.

4 Evaluation in Field Trial

The AMADEE-20 mission area covers an area of 5×5 km
around the base station, having a resolution of 0.5 m per
pixel. The generated cost map, which is part of the EC for
the AMADEE-20 Mars analog mission, is evaluated dur-
ing the field tests in October 2021. Within the AMADEE-
20 EC, the AEROSCAN UAV was launched by astronauts
during EVAs, and supervised by the remaining crew in the
habitat. In order to allow the in-situ exploration of the
EC by the EXOSCOT rover team, the recorded images
were processed into georeferenced maps using the pro-
cess described in section 2.4. After the selection of a target
area our approach calculated a navigation solution, which
guides the robot to the selected region. During the rover’s
traverse, camera images and 3D point clouds (stereo cam-
era, 3D LiDAR) together with a GNSS ground truth pose
are recorded. The EXOSCOT rover was deployed 7 times,
with a maximum distance of 2 km during AMADEE-20.

5 Conclusions

The experiments for the proposed robotic EC are regarded
as a success story, as the EC was successfully tested dur-
ing the field trials of the AMADEE-20 mission Didari
et al. (2022). Here, the rover was able to explore the habi-
tat autonomously, based on the spatial data created with
the approach described in the paper. The success is mea-
sured by the fact, that the rover reached the defined targets
in the habitat and made it home (i.e. to the base station)
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safely, without being damaged or stuck. The presented
work shows that convolutional neural networks, in con-
junction with elevation data, can significantly improve the
creation and the quality of navigational maps for outdoor
robot navigation. Workflows that are already tested under
real-world scenarios, can help to shape and manage future
exploration missions of planets.

Further research works should focus on the classification
accuracy of a feature-class as a factor that influences the
navigation. More advanced cost maps could be created if
the rover could process a cost map from a given set of in-
put layers on the fly, and learning from previous rover de-
ployments - i.e. which feature classes to avoid, and which
can be traversed. This would include autonomous spatio-
temporal learning capabilities for rovers. Weight-factors
tailored to the robot’s profile could be utilized to further
advance the navigation. As an example, a robot with a con-
tinuous track - like a tank - could maneuver more difficult
terrain than a robot with four wheels.
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