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Abstract. Recent progress on geospatial and sensory,
artificial intelligence technologies defines the necessity
to revisit conventional geodetic techniques for surveying
and mapping. In the present study, an alternative novel
surveying method is implemented, which enables the
precise localization of characteristic points in any area,
including unknown and GNSS-denied environments, by
simply using low-cost cameras. The methodology is
based on novel algorithms that combine simultaneous
localization and mapping (SLAM), deep learning, point-
cloud processing, along with coordinate systems’
transformations. The camera system subsequently
detects and localizes target markers and reconstructs a
3D environment with relative coordinate estimations
under a few centimeters-level of accuracy.
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1 Introduction

Nowadays, the evolution of satellite technology,
uncrewed aerial vehicles (UAV), passive or active
sensors and data science, results in substantial advances
in geodetic instruments and techniques.

Traditional surveying methods may provide high level of
accuracy, yet, they still remain time consuming and
require significant human effort and pricey equipment in
the field [1]. On the other hand, GNSS (Global
Navigation Satellite Systems) surveying methods, have
to confront challenges of precise localization due to
insufficiency of satellite coverage and GNSS signal in
urban environments or areas with dense vegetation [2].
Concerning photogrammetry, classical techniques need
an accurate establishment of control points and high
computational requirements during and after the field

work and data processing respectively. Instead, modern
techniques such as “direct georeferencing” require
additional equipment like a GNSS receiver and an IMU
(inertial measurement unit) which increase the
equipment cost [3]. Laser scanning techniques have
become increasingly popular in recent years combining
accurate and speed mapping, however they involve quite
expensive equipment.

The present study, proposes a cost-effective, rapid and
efficient surveying solution for GNSS-denied
environments where a few minutes of walking with an
RGB-D (Visual + Depth) camera on hand, are enough to
map an area of interest. The proposed methodology
which is based on SLAM with deep learning using the
multi-line convergence (MLC) and plane alignment (PA)
methods proposed in the previous stage of our work [4],
is able to produce accurate coordinate estimations.

2 Methodology

The overall architecture of the methodology is presented
in figure 1:

Figure 1 Overall architecture of the system

Initially, a visual marker which is defined as the origin
of the local coordinate system is placed in the area of
interest, while a number of visual markers which are
defined as targets represent natural or artificial features.
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During mapping, the RGB-D image frames are inserted
to the HF-Net [5] neural network in order to extract
keypoints and descriptors of the scene (feature extraction
module), while the system based on keypoints and
descriptors, predicts the camera pose, re-localizes the
camera in case of a prediction failure and extracts new
keyframes aiming to map the surroundings
simultaneously (fig 2). Subsequently, multi-line
convergence method localizes the markers in the scene
using least squares optimization [4] while plane
alignment defines the horizontal plane defining the pose
of the origin marker [4]. Finally, all estimations are
transferred from the initial SLAM based coordinate
system, to the marker coordinate system which results in
targets and point cloud coordinate estimations.

Figure 2 Feature detection and mapping. Left: Target marker
based on ArUco library [6, 7]. Right: Point cloud, camera
trajectory (green line) and keyframes (blue squares) extracted
in real time

3 Results

To validate the present methodology four markers were
used: one for the origin and three for the targets in a
distance of about 5 meters while the camera followed a
squared path.

Before the performance of the experiment, the markers
and a number of characteristic points were measured
using the total station for validation purposes. The origin
marker is defined with the coordinates (0, 0, 0) in X, Y
and Z axes, while the target markers were measured
based on the origin marker.

The results of the experiment are presented in table 1.
The errors are expressed as the absolute difference
between ground truth and estimation in each axis.

Table 1. Coordinate estimations in X, Y, Z and related errors.

Target 1 (cm) X Y Z

Ground truth 0 486.0 0

Estim 7.0 490.0 1.0

Error 7.0 4.0 1.0

Target 2 (cm) X Y Z

Ground truth -492.0 486.0 0

Estim -491.0 493.0 -0.3

Error 1.0 7.0 0.3

Target 3 (cm) X Y Z

Ground truth -497.0 0 0

Estim -486.0 -1.4 -8.0

Error 11.0 1.4 8.0

As presented in table 1, the errors in X varies from 1 cm
(in target 2) to 11 cm (in target 3), the errors in Y have
a range of 1.5 cm (in target 3) to 7 cm (in target 2) while
the errors in Z varies from 0.3 cm (in target 2) to 8 cm
(in target 3).

4 Conclusions

This study, proposed an alternative cost-effective
surveying solution and mapping technique for unknown
environments using only an RGB-Depth camera and at
least one visual point. SLAM and deep learning,
combined with multi-view geometry and point-cloud
processing reinforce the scene understanding and
reconstruct the 3D environment within a few centimeters
of accuracy.
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