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Abstract. Accurate and consistent estimations on the
present and future population distribution, at fine spatial
resolution, are fundamental to support a variety of ac-
tivities. However, the sampling regime, sample size, and
methods used to collect census data are heterogeneous
across temporal periods and/or geographic regions. More-
over, the data is usually only made available in aggre-
gated form, to ensure privacy. In an attempt to address
these issues, several previous initiatives have addressed
the use of spatial disaggregation methods to produce high-
resolution gridded datasets describing the human popu-
lation distribution, although these projects have usually
not addressed specific population subgroups. This paper
describes a spatial disaggregation method based on self-
training regression models, innovating over previous stud-
ies in the simultaneous prediction of disaggregated counts
for multiple inter-related variables, by leveraging multi-
output models based on gradient tree boosting. We report
on experiments for two case studies, using high-resolution
data (i.e., counts for different subgroups available at a res-
olution of 100 meters) for the municipality of Amsterdam
and the region of Greater Copenhagen. Results show that
the proposed approach can capture spatial heterogeneity
and the dependency on local factors, outperforming al-
ternatives (e.g., seminal disaggregation algorithms, or ap-
proaches leveraging individual regression models for each
variable) in terms of averaged error metrics, and also upon
visual inspection of spatial variation in the resulting maps.

Keywords. spatial disaggregation, gridded population
datasets, gradient tree boosting, self-supervised learning

1 Introduction

Accessing socio-demographic data at high resolution is
still challenging in many parts of the world, despite the
wide availability of vast amounts of population data. This

is usually due to limitations on the means and infrastruc-
ture for a regular census in developing countries, or pri-
vacy restrictions in developed ones. Nonetheless, accurate
and consistent estimations on present and future popula-
tion distribution, at fine spatial resolution, are fundamental
to support public administrative functions in various sec-
tors (Mennis, 2009; Lloyd et al., 2019; Qiu et al., 2022).
Example applications relate to the environment (e.g., for
environmental impact assessment), healthcare (e.g., for
modelling epidemics (Hay et al., 2005)), economy (e.g.,
for studying inequality and segregation (Catney and Lloyd,
2020)), or urban development (e.g., for service planning
and delivery (Langford et al., 2008)).

In order to address the lack fine resolution data, numerous
attempts have been made at downscaling spatial popula-
tion datasets, either by using traditional or novel computa-
tional approaches. Since access to aggregated population
counts according to districts, municipalities, or even cen-
sus tracts is very common, spatial disaggregation proce-
dures have often been considered to support the produc-
tion of harmonised, reliable, temporally regular, and spa-
tially detailed datasets on population distribution. These
methods have ranged in complexity, from simpler mass
preserving areal weighting (Goodchild et al., 1993), to py-
cnophylactic interpolation capable of producing ’smooth
maps’ (Tobler, 1979), or dasymetric weighting schemes
that recognise that locations and population density are
not homogeneous across space, depending on local fac-
tors. Recent methods for spatial data downscaling leverage
regression modelling and machine learning (Stevens et al.,
2015; Monteiro et al., 2018), combining ancillary informa-
tion from different sources (e.g., satellite imagery or mo-
bile phone data) in the definition of the dasymetric weights
supporting the disaggregation. Still, and although modern
procedures are reported to achieve accurate results, most
previous studies have not addressed the disaggregation of
specific population subgroups (e.g., age groups), instead
focusing on the application to entire populations.
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This study reports on an adjustable and reproducible
methodology for disaggregating interrelated data consist-
ing of multiple socio-demographic variables (e.g., pop-
ulation counts corresponding to different age groups, or
different geographic regions of origin). Our approach is
useful for situations where fine resolution data, concern-
ing multiple variables, are required, but only aggregate
data is available. Going beyond simple population den-
sity, towards more detailed socio-demographic variations
and their distributions in the urban fabric, can contribute
to applications that need to account with socially and ge-
ographically balanced allocation. Our contributions relate
to improving spatial disaggregation results in the particu-
lar setting of multiple interrelated variables.

The core component of the proposed methodology is a
spatial disaggregation approach based on the self-training
of a regression model combining multiple ancillary vari-
ables, considering the simultaneous prediction of disag-
gregated counts for multiple inter-related variables, by
leveraging multi-output models based on gradient tree
boosting. Our main research contributions are as follows:

1. We propose a spatial downscaling method based
on self-training, relying on gradient tree boosting
to disaggregate counts associated to polygonal re-
gions, into high resolution grid cells. The method ad-
vances over previous work by simultaneously pre-
dicting multiple inter-related values, corresponding
to different socio-demographic variables of interest.

2. The proposed method was examined in two case stud-
ies involving densely populated urban areas, where
land uses can be distinguished in broad categories.
We specifically used high-resolution data (i.e., counts
for different population subgroups, available at a res-
olution of 100 meters) for the the municipality of
Amsterdam and the region of Greater Copenhagen.

3. We report on a quality assessment of the downscaled
results, based on ground truth data at the same target
resolution. Ours is thus one of the first studies that
directly evaluates spatial disaggregation results at the
level of high-resolution grid cells.

4. We show that our methodology is convenient for
studies involving multiple socio-demographic vari-
ables, compared to separate single-output models.
High quality results can be obtained with a single
model, simplifying the overall disaggregation proce-
dure and lowering the computational requirements.

The remainder of this document is structured as follows:
Section 2 presents related work in the task of geospatial
data disaggregation. Section 3 describes the proposed dis-
aggregation approach, followed by the introduction of the
used datasets and tools in Section 4. Section 5 presents the
produced results for our two case study areas, and Sec-
tion 6 summarises our conclusions and points out direc-
tions for future research. Lastly, Section 7 describes the
data and software availability.

2 Related Work

This section describes traditional methods for spatial data
disaggregation, followed by a survey of recent approaches.

2.1 Seminal Spatial Disaggregation Methods

The simplest spatial disaggregation method is perhaps
mass-preserving areal weighting (Goodchild et al., 1993),
in which the known counts associated to source admin-
istrative regions (e.g., the population associated to coarse
administrative districts) are divided uniformly across their
area, in order to produce estimates at target regions of
higher spatial resolution. The total estimated value for a
target zone is thus a weighted sum of the fractional count
values from all source zones falling within the target zone.

Pycnophylactic interpolation (Tobler, 1979) can be seen
as an extension of simple areal weighting, breaking the
homogeneity assumption and assuming a degree of spa-
tial auto-correlation in the variable being downscaled (i.e.,
areas that are close to one another should have similar val-
ues). The method starts by applying mass-preserving areal
weighting, afterwards smoothing the resulting values by
replacing them with the average of their neighbours (e.g.,
the adjacent cells in a raster grid). The aggregation of the
predicted values for all zones within a source region is then
compared with the original value, and adjusted to keep the
consistency within the source regions. The method con-
tinues iteratively until there is either no significant differ-
ence between predicted values and actual values within
the source regions, or until there have been no significant
changes from the previous iteration.

In turn, dasymetric schemes use a weighted surface to dis-
tribute the source counts, instead of considering a uniform
(or a smooth) distribution of the target values, as in the
previous methods. The weighted surface can reflect ancil-
lary spatial data such as land coverage, masks correspond-
ing to building footprints, or night-time light emissions,
to facilitate the disaggregation. The general idea is to ap-
ply weights for different source area types, which repre-
sent the percentage of the target variable that is likely to
be contained within that area type. The main challenge in
dasymetric disaggregation involves finding an appropriate
set of weights to accurately reflect the distribution of the
variable that is to be disaggregated. While some schemes
use simple binary masks built from land coverage data
(i.e., using data on water bodies or building footprints,
to denote regions that should receive a fraction of the
total value), other approaches rely on expert knowledge
and manually-defined rules to define fractional dasymetric
weights. More recent methods leverage machine learning
to improve upon the heuristic definition of weights.

2.2 Machine Learning for Spatial Disaggregation

Several previous research initiatives have resulted in the
production of openly available high-resolution gridded
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datasets that describe the human population distribution,
leveraging machine learning methods to combine ancillary
information from different sources (e.g., satellite imagery
or mobile phone data) in the definition of weights support-
ing the disaggregation. Well-known examples include the
datasets made available in the context of the Gridded Pop-
ulation of the World (GPW), Global Human Settlement
Layer (GHSL), or WorldPop projects. Still, it should be
noted that most previous efforts have not considered the
creation of datasets focusing on different population sub-
groups (e.g., according to age or gender).

In the context of the WorldPop project, Stevens et al.
(2015) developed a technique for creating gridded predic-
tions of population density with a resolution of approxi-
mately 100 × 100 meters, through a dasymetric approach
that leverages random forest regression models. Among
others, ancillary datasets which incorporate information
on land coverage, digital elevation, the road network, and
water bodies, were taken into account when estimating a
weighting surface to perform dasymetric redistribution of
census counts, originally at a country level, into the raster
grid cells. The proposed approach relies on a multi-stage
estimation technique, which tunes the number of covari-
ates within the random forest model that estimates den-
sity from the ancillary variables. The density maps are
computed from aggregated data available at coarse regions
(e.g., provinces), and they are then used in a standard dasy-
metric approach for obtaining the population counts at
each raster cell. For evaluation, the cells within each of
the finer census units (i.e., villages or sub-locations) were
summed and compared with the corresponding known
counts, through metrics such as the Mean Absolute Error
(MAE) or the Root Mean Squared Error (RMSE).

In another recent study exploring the use of regression
analysis to infer dasymetric weights, Cheng et al. (2020)
reported on the disaggregation of census data for China
into a raster grid with a resolution of 1 × 1 km per cell for
each month in 2015. The authors combined environmen-
tal information and mobile phone positioning data as the
ancillary variables used to infer the dasymetric weights.
The disaggregation method corresponds to a hybrid in-
ference approach, combining random forests with area-to-
point kriging. The random forest model is trained with data
at the town level, aggregating the ancillary data (i.e., tak-
ing the mean values per town as the independent variables)
and using the population density as the target variable. The
model is then used to produce population estimates for the
target cells, which are re-aggregated to the town level for
computing the areal residuals for each town. The area-to-
point kriging model finally uses this information to adjust
the random forest predictions under the assumption that
the sum of the encompassing residuals at the pixel level
should match the town’s residual.

Instead of training regression models with aggregated
data, other studies have instead proposed to estimate mod-
els directly with data at the target resolution, e.g. through
self-training procedures. For instance Vargas-Munõz et al.

(2022) briefly described a method based on Markov Ran-
dom Fields (MRF) that iteratively improves the initial es-
timations of a dasymetric disaggregation method. During
the iterations, the MRF-based method minimises an en-
ergy function that encourages 100 meter cells with similar
features to have similar population predictions, while at
the same time ensuring that the predictions sum up to a
value close to the available regional census data. Monteiro
et al. (2018, 2019, 2021) proposed spatial disaggregation
methods based on iteratively refining initial estimates pro-
duced by seminal methods (e.g., pycnophylactic interpola-
tion or dasymetric mapping leveraging heuristic weights),
by self-training different types of regression models. At
each step, the previous predictions are used as the tar-
gets for training a regression model, which is then used
to produce new estimates. The regression estimates are ad-
justed in order to ensure consistency with the source region
counts (i.e., to enforce the pycnophylactic property), and
the process is repeated for a fixed number of steps, or until
no relevant changes are detected. Given the good results
reported by Monteiro et al., this general method was also
considered in the present study, adapting the procedure to
the simultaneous downscaling of multiple variables.

3 The Proposed Method

The spatial disaggregation method used in our experiments
relies on a self-training approach that combines weighted
interpolation and regression-based dasymetric mapping.
We specifically extended the method proposed by Mon-
teiro et al. (2018, 2019, 2021), which in turn is adapted
from a method described by Malone et al. (2012) for gen-
eral spatial data downscaling. The approach is said to rely
on self-training, in the sense that initial estimates are first
computed through a simple disaggregation heuristic (e.g.,
weighted interpolation leveraging pre-existing population
datasets), that can be seen as a teacher model. These re-
sults are then used to train a regression model (i.e., a stu-
dent model), whose predictions are iteratively refined (i.e.,
the student from one iteration is then used as the teacher
model for the next). Even though we have access to the
ground truth disaggregated values, we do not use them
during model training to simulate scenarios in which the
high-resolution data is not available (not even for a part of
the study region, or for a similar region). The ground-truth
counts are used only for evaluation purposes, in order to
assess the quality of the proposed methodology. In the ex-
periments reported in this paper, we execute a fixed num-
ber of self-training iterations (10) and retain the disaggre-
gated values computed at that iteration. The general idea
is presented in Figure 1 and can be described as follows:

1. We start from a vector polygon layer with the aggre-
gated (source) population counts, as provided by sta-
tistical offices for relatively coarse regions.

2. Based on the aforementioned layer, we create a raster
representation of disaggregated estimates, through a
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Figure 1. The different steps involved in the proposed spatial disaggregation method.

simple heuristic such as pycnophylactic interpola-
tion (Tobler, 1979), or dasymetric mapping leverag-
ing some heuristic weights.

3. We train a regression model to infer the results pro-
duced in Step 2 from ancillary information available
as gridded rasters at the target resolution. After train-
ing, the regression model is used to produce new dis-
aggregated values, leveraging and generalising pat-
terns in the ancillary data to improve the predictions.

4. The values returned by the regression model in the
previous step are proportionally adjusted to retain the
original counts in the source zones.

5. Steps 3 and 4 are repeated, in order to adjust the dis-
aggregated estimates and until reaching a maximum
number of iterations.

The following subsections detail the heuristics that we
tested for producing the initial estimates (Section 3.1), the
regression algorithms that we considered for combining
the different sources of ancillary data (Section 3.2), and
the use of an appropriate loss function for model training,
dealing with the characteristics of our data (Section 3.3).

3.1 Initial Estimates

We experimented with two different heuristics for pro-
ducing the initial estimates: pycnophylactic interpolation

(PI) and a dasymetric approach with heuristically defined
weights for interpolation (WI). Spatial auto-correlation is
the main driving factor in PI, with estimates computed on
the assumption that regions close to each other tend to have
similar values. However, no other properties are taken into
account for estimating the distribution of the target vari-
able and, consequently, results tend to be over-smoothed.
This issue is addressed by our second approach, which
disaggregates the data proportionally to weights derived
from external information (in our case, derived from a pre-
existing high-resolution population dataset). The method
can be formalised through the following equation (Eq. 1),
where Wt is the estimated count in a target zone t, Ss is
the count in source zone s, Pt is the population count in
target zone t, and Ps is the count in source zone s.

Wt =
∑
s

(
Pt

Ps
×Ss

)
. (1)

3.2 Regression Algorithms

We tested two different regression algorithms, based on
ensembles of decision trees, to estimate the disaggregated
values: random forests and gradient tree boosting. Given
our objective of disaggregating counts for different popu-
lation subgroups, we tested both algorithms on single- and
multi-output scenarios.

Random forests (Breiman, 2001) correspond to one of
the most popular regression algorithms, having been ex-
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tensively used in a wide range of applications within the
Geospatial Information Sciences (GIS) and demography
(Georganos et al., 2021; Qiu et al., 2020; Stevens et al.,
2015). It is an example of a bagging strategy with toler-
ance to overfitting, that improves accuracy by averaging
several simple decision tree models (Verdhan, 2020).

In turn, gradient boosting is another ensemble method
where different learners are trained sequentially, based on
the results of previous ones. Learners improve in every
step, by focusing more on the errors of the last iteration,
while bias is simultaneously reduced (Verdhan, 2020). The
foundations of gradient boosting rely on the frameworks
of Freund and Schapire (1999) and Friedman (2001), and
this type of model was selected in this study due to the
high flexibility and customisability, in pair with very good
results across a variety of tasks. Given the use of gradi-
ents for model training, this strategy also easily allows for
the incorporation of customised loss functions (Natekin
and Knoll, 2013). In our case, we used a task-specific loss
function that combines linear and quadratic penalties, de-
scribed in the following subsection.

3.3 A Task-Specific Loss Function for Training
Multi-Output Gradient Boosting Models

In our experiments with multi-output gradient boosting
models, we combined two of the most typical regression
loss functions, namely the Mean Absolute Error (MAE)
and the Root Mean Square Error (RMSE). Considering
the objective of simultaneously predicting disaggregated
counts for different population subgroups (e.g., the popu-
lation according to different age groups, or according to
different places of origin, noting that by summing the dif-
ferent groups we get the total population), we added sepa-
rate penalties for errors in the predictions for the different
groups, and errors in the total population.

The MAE and the RMSE respectively penalise the errors
linearly and quadratically, making the RMSE more sen-
sitive to large differences. Our customised loss function
combines the RMSE between ground truth and predicted
values for all the different subgroups being disaggregated,
together with the MAE between the sums of the values
within the groups. The loss function is presented in Equa-
tion (2), where yi corresponds to the ground truth value
of the variable i being disaggregated (i.e., for an individ-
ual population subgroup), while ŷi corresponds to the pre-
dicted value of the same variable. We denote by G the set
of groupings for the different variables.

LCombined(y, ŷ) =

|G|∑
j=0

∑
i∈Gj

RMSE(yi, ŷi)+

|G|∑
j=0

MAE

∑
i∈Gj

yi,
∑
i∈Gj

ŷi

 .

(2)

4 Data Sources

This section describes the pre-existing high-resolution
population dataset used for producing the initial estimates,
as well as the population datasets used for evaluating the
produced results. The section also introduces the ancil-
lary datasets used in the proposed approach. The data
pre-processing and disaggregation experiments were per-
formed with an open-source software architecture that pri-
marily uses non-proprietary data formats and Python tools
like GDAL, scikit-learn, and CatBoost. A few of the con-
sidered datasets are nonetheless of restricted use, due to
confidentiality reasons. All spatial data used the ETRS89
Lambert Azimuthal Equal-Area (EPSG: 3035) geospatial
coordinate system.

4.1 Population Data

Our spatial disaggregation experiments used a selection of
socio-demographic groups corresponding to the data avail-
ability in two case study areas, corresponding to Amster-
dam and the region of Greater Copenhagen.

For Amsterdam, the source units for disaggregation cor-
respond to neighbourhoods, and the population is divided
in 5 age groups – children (0-19 years), students (20-29
years), mobile adults (30-44 years), non mobile adults (45-
65 years), and elderly (65+ years) – and 7 areas of origin –
Natives, Western, Non-Western, and the 4 largest migrant
groups: Suriname, Turkey, Antilles, and Morocco. Two
datasets are provided by the Municipality (Onderzoek, In-
formatie en Statistiek – OIS), respectively at the neigh-
bourhood level (OISn, https://data.amsterdam.nl) and at a
100 meters grid cell level (OISg).

In the case of Copenhagen, the data are provided by Statis-
tics Denmark (DST) at the aggregated administrative level
of municipalities (DSTm, https://www.statbank.dk). The
age groups are the same from the Amsterdam case study,
and two categories of migration background are explored:
the general category includes three classes – Natives, EU,
and non-EU – while the detailed category divides the pop-
ulation into seventeen geographic regions of origin (Statis-
tics Division, United Nations).

Table 1 presents an overview of the population datasets.
Counts are shown by demographic group as reference for
each case study area, indicating the differences between
the aggregated- and the grid cell datasets that are made
available (our tests used exclusively the data made avail-
able at the level of grid cells, although small discrepan-
cies exist in the official data reported at different aggre-
gation levels). Groups with population lower than 1.000
people are omitted from the tables, but taken into con-
sideration in the analysis. Lastly, it is worth mentioning
that the source and target zones deviate significantly be-
tween the 2 cases. The mean area of the municipalities in
Copenhagen is 60 times larger than the mean area of the
neighbourhoods in Amsterdam (Acph = 30.82km2, Aams =
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Table 1. The population datasets used in our experiments.

Amsterdam Copenhagen

OISg OISn DSTg DSTm

7.513 cells 482 neighbourhoods 21.615 cells 17 municipalities
Total Population 862.973 862.987 Total Population 1.331.816 1.332.152
Age Groups
Children 166.465 166.470 Children 286.975 286.995
Students 165.889 165.890 Students 244.584 244.672
Mobile Adults 212.799 212.802 Mobile Adults 298.115 298.263
Not Mobile Adults 209.843 209.846 Not Mobile Adults 307.503 307.577
Elderly 107.977 107.979 Elderly 194.635 194.645
Migration Status
Natives 393.180 393.185 Natives 1.026.361 1.026.564
Western 160.565 160.566 EU 210.190 210.263
Non-Western 111.730 111.733 Not EU 209.379 210.306
Suriname 64.588 64.588 Australia and New Zealand 1.900 1.900
Turkey 44.054 44.054 Eastern Asia 10.122 10.123
Antilles 12.173 12.173 Eastern Europe 32.583 32.610
Morocco 76.683 76.688 Lat. Am. and the Caribbean 8.634 8.643

Northern Africa 12.466 12.468
Northern America 7.015 7.019
Northern Europe 35.138 35.157
South-eastern Asia 14.394 14.400
Southern Asia 51.430 51.451
Southern Europe 32.730 33.162
Sub-Saharan Africa 17.989 18.005
Western Asia 61.143 61.388
Western Europe 18.527 18.535

0.48km2), and Copenhagen covers almost 3 times more
disaggregated units (Ecph = 407x281, Eams = 236x179). In
both cases, only approximately 18% of the cells in the ex-
amined areas are inhabited.

4.2 Preparation of the Ancillary Data

A wide range of ancillary layers were produced for this
study, with a primary concern in the use of open data for
facilitating reproducibility.

Specifically, the information on the distribution of the pop-
ulation, expressed in number of people per grid cell and
used for an initial disaggregation heuristic, is provided by
Schiavina et al. (2019) in the context of the Global Hu-
man Settlement Layer (GHSL) project, for the target year
of 2015 and at the spatial resolution of 250 meters. This
dataset (GHS-POP) is itself a product of disaggregation
from census or administrative units into 250 meters grid
cells, informed by the distribution and density of built-up
areas, as mapped in the GHSL global layer. The original
raster was re-projected and re-sampled with GDAL, us-
ing a combination of algorithms. The selection of the most
accurate pre-processing strategy was based on the com-
parison of the produced rasters to the ground truth lay-
ers (OISg, DSTg). The lowest error was obtained when
using nearest neighbours and cubic spline algorithms, re-
spectively for re-projection and re-sampling. Despite its
wide-spread use and recognition, the GHS-POP layer de-

viates significantly to the gridded ground truth datasets in
our case study areas. For example, the GHS-POP popu-
lation in the municipality of Amsterdam is revealed to be
830.352 people, 32.635 people lower than the ground truth
in the OISn dataset, showing a mean error of 65 people per
neighbourhood and 132 people among the grid cells.

A set of additional layers were considered as ancillary
data. For instance the European Settlement Map (ESM)
represents the human settlements in Europe for the year
of 2015 (Sabo et al., 2019), classifying the built-up areas
into residential and non-residential, at a spatial resolution
of 10 meters. We used these data to represent the percent-
age of residential coverage at 100 meter grid cells. Five
binary layers were also prepared at a resolution of 100 me-
ters, obtained from the land coverage dataset of the Coper-
nicus Land Monitoring Service (European Environment
Agency (EEA)). These layers divide initially the artificial
surfaces in urban fabric, transportation, and industrial ar-
eas; and secondly the natural environment in agricultural
areas, forests and green spaces, and water bodies and wet-
lands. Due to the poor representation of the inner city wa-
ter bodies, green spaces, and industrial areas, the produced
binary layers were further processed and combined with
corresponding Open Street Map datasets (OSM), resulting
in scaled datasets of percentage coverage.

Apart from the aforementioned pan-European datasets,
case specific layers were produced at high resolution, con-
sidering the major factors that affect the residential choices
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Table 2. MAE and SD for the different approaches and different variables of interest, in Amsterdam and using 12 input layers (ams12).

PI WI RFs100 RFm100 GB100 GB250 GB500

Total Population 12.4±36.5 11.1±33.9 9.6±30.9 11.1±33.9 12.1±41.4 11.4±38.5 9.4±31.5
Age Groups
Children 2.8±8.6 2.6±8.3 2.3±7.6 2.6±8.3 2.7±9.7 2.5±9.0 2.2±7.6
Students 3.0±11.9 2.8±11.6 2.6±11.4 2.8±11.6 2.8±12.8 2.8±12.5 2.5±11.6
Mobile Adults 3.2±10.4 3.0±9.8 2.6±9.1 3.0±9.8 3.2±11.8 3.0±11.1 2.6±9.3
Not Mobile Adults 3.1±9.3 2.8±8.6 2.4±7.9 2.8±8.6 3.0±10.5 2.8±9.6 2.4±7.9
Elderly 1.8±6.5 1.7±6.2 1.6±6.2 1.7±6.2 1.8±7.0 1.7±6.8 1.5±6.1
Migration Background
Natives 5.6±16.5 5.1±15.3 4.4±14.1 5.1±15.3 5.5±18.5 5.2±17.5 4.4±14.5
Western 2.5±8.1 2.3±7.7 2.1±7.4 2.3±7.7 2.4±8.8 2.3±8.5 2.1±7.4
Non-Western 2.0±7.5 1.9±7.4 1.8±7.0 1.9±7.4 1.9±7.9 1.9±7.6 1.7±7.0
Suriname 1.2±5.0 1.1±4.8 1.1±4.7 1.1±4.8 1.2±5.4 1.1±5.0 1.0±4.5
Turkey 0.9±3.8 0.8±3.6 0.8±3.5 0.8±3.6 0.9±4.6 0.9±4.3 0.8±3.5
Antilles 0.3±1.2 0.3±1.2 0.3±1.2 0.3±1.2 0.3±1.3 0.3±1.4 0.3±1.2
Morocco 1.6±7.1 1.5±6.8 1.4±6.5 1.5±6.8 1.6±8.5 1.6±7.9 1.3±6.3

of different demographic groups. The majority of these
layers are common for both case study areas. The layers,
their sources, and processing details, are as follows:

1. Proximity to railway stations, schools, universities,
and cultural spaces like cinemas or theatres. They
show the total number of accessible services in a
biking distance of 15’ with average biking speed
of 15 km/h (Amsterdam: OSM, Copenhagen: Kort-
forsyningen, Bygnings- og Boligregistret (BBR)).

2. Proximity to bus stops. It shows the total number of
accessible bus stops in a walking distance of 10’ with
average walking speed of 5 km/h (Amsterdam: OSM,
Copenhagen: Movia Trafik).

3. Building height, volume, and construction year. They
represent the average height, volume, and construc-
tion year of the buildings in the corresponding grid
cell (Amsterdam: PDOK, Copenhagen: Bygnings- og
Boligregistret (BBR)).

4. Real estate prices. It shows the average purchase
price of the sold buildings from 2010 to 2020 (Copen-
hagen: Bygnings- og Boligregistret (BBR)).

5 Experimental Results

Our analysis was developed in various steps, starting from
experiments around the combinations of the ancillary in-
put layers, and leading to the comparison of the self-
trained multi-output approach against baselines.

The predicted results are directly evaluated against the
ground truth data, with Sections 5.1 and 5.2 presenting the
numerical assessment and visual inspection, respectively.

The most suitable combination of ancillary data was se-
lected after a series of small experiments with a re-
stricted collection of variables. We report here the re-

sults of the best configuration for each case. For Amster-
dam, we used 12 input layers (ams12) – residential cov-
erage (ESM); green spaces (Corine/OSM); water cover-
age (Corine/OSM); industrial areas (Corine/OSM); trans-
portation (Corine); proximity to bus stops, railway sta-
tions, schools, and universities; construction year; building
volume and height. For Copenhagen, only 3 detailed lay-
ers were used (cph3) – construction year, building height,
and real estate prices. In the end, we further report an addi-
tional combination of ancillary data for the case of Copen-
hagen, using 12 input layers.

5.1 Evaluation with Error Metrics

The error metrics considered in our analysis are the Mean
Absolute Error (MAE), the Standard Deviation of the error
(SD), and the Percentage Accuracy (PE), as described in
Equations 3, 4, and 5.

MAE=

∑n
i=1 |yi −xi|

n
. (3)

SD =

√√√√∑n
i=1

(
yi −xi

)2

n
. (4)

PE =
1

n

n∑
i=1

(
yi −xi

xi

)
× 100. (5)

Tables 2 and 3 present result quality scores for differ-
ent disaggregation methods, highlighting the best output
for each particular case study area. Each table includes
the main demographic groups row-wise, and the MAE/SD
of the explored models in each column – Pycnophylac-
tic Interpolation (PI), Weighted Interpolation (WI), single-
output Random Forest Regression (RFs), multi-output
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Table 3. MAE and SD for the different approaches and different variables of interest, in Copenhagen and using 3 input layers (cph3).

PI WI RFs100 RFm100 GB100 GB250 GB500

Total Population 13.1±36.8 9.2±30.5 7.9±27.6 8.8±29.1 8.7±30.1 7.7±28.2 7.4±27.4
Age Groups
Children 2.9±7.6 2.1±6.5 1.9±6.1 2.0±6.3 2.1±6.5 1.9±6.2 1.9±6.1
Students 2.8±11.8 2.2±10.5 1.9±10.2 2.0±10.2 2.0±10.8 1.8±10.3 1.8±10.4
Mobile Adults 3.1±10.1 2.3±8.5 2.0±7.9 2.1±8.1 2.2±8.6 2.0±8.1 1.9±8.0
Not Mobile Adults 3.0±8.0 2.2±6.8 1.9±6.2 2.1±6.6 2.1±6.5 1.9±6.2 1.8±6.0
Elderly 2.1±5.8 1.6±5.3 1.5±5.1 1.6±5.3 1.6±5.1 1.4±4.9 1.4±4.9
Migration Background
EU 2.6±10.0 2.2±9.4 2.0±9.3 2.1±9.5 2.1±9.4 1.9±9.0 1.9±9.1
Not EU 2.6±9.9 2.2±9.4 2.0±9.3 2.1±9.4 2.1±9.3 1.9±9.0 1.9±9.0
Natives 9.9±27.2 6.9±22.1 5.9±19.4 6.6±20.7 6.3±21.3 5.9±20.2 5.6±19.0
Australia and New Zealand 0.0±0.3 0.0±0.3 0.0±0.3 0.0±0.3 0.0±0.3 0.0±0.3 0.0±0.3
Eastern Asia 0.2±0.8 0.1±0.8 0.1±0.7 0.1±0.7 0.1±0.7 0.1±0.7 0.1±0.8
Eastern Europe 0.4±1.7 0.4±1.6 0.3±1.6 0.4±1.6 0.4±1.6 0.3±1.5 0.3±1.6
Latin America and the Caribbean 0.1±0.5 0.1±0.5 0.1±0.5 0.1±0.5 0.1±0.5 0.1±0.5 0.1±0.5
Northern Africa 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0
Northern America 0.1±0.6 0.1±0.6 0.1±0.6 0.1±0.6 0.1±0.6 0.1±0.6 0.1±0.6
Northern Europe 0.4±1.8 0.3±1.7 0.3±1.6 0.3±1.7 0.3±1.6 0.3±1.6 0.3±1.6
South-eastern Asia 0.2±0.7 0.2±0.7 0.2±0.7 0.2±0.7 0.2±0.7 0.2±0.7 0.2±0.7
Southern Asia 0.7±2.9 0.6±2.8 0.6±2.7 0.6±2.8 0.6±2.8 0.6±2.7 0.6±2.7
Southern Europe 0.4±1.8 0.4±1.7 0.3±1.7 0.4±1.7 0.4±1.7 0.3±1.7 0.3±1.7
Sub-Saharan Africa 0.3±1.5 0.2±1.5 0.2±1.5 0.2±1.5 0.2±1.5 0.2±1.5 0.2±1.6
Western Asia 0.9±4.0 0.8±3.9 0.7±3.7 0.8±3.9 0.8±3.8 0.7±3.6 0.7±3.6
Western Europe 0.2±1.1 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0 0.2±1.0

Random Forest Regression (RFm), and multi-output Gra-
dient Boosting (GB). Each regression model name is ac-
companied by the selected number of estimators, indicat-
ing the number of trees used to build the ensemble. We
include the results of 100 trees for random forests, and
100, 250, and 500 trees for gradient boosting. For RFs,
the predictions for each variable are estimated by separate
models (≈ 1.4’/iteration), while for RFm, the predictions
for all groups are estimated simultaneously by one sin-
gle regression model (≈ 10’/iteration). Similarly, for the
case of GB, all groups are predicted together (≈ 600’/iter-
ation, although we did not use Graphics Processing Units
(GPUs) for model training), except for the total population
which is later calculated as the sum of the corresponding
age groups. The loss function in this last model counts also
for the difference between the predictions and the real val-
ues in terms of the sum of two or three population sub-
groups, according to the examined area.

In terms of the MAE, the multi-output gradient boosting
regressor with increased estimators performs better than
the rest of the models, both in Amsterdam and Copen-
hagen. It slightly outperforms RFs for most of the features,
or achieves the same numerical scores. According to Ta-
bles 2 and 3, the MAE of RFs100 and GB500 for the total
population is less than 10 persons in both cases, with a
standard deviation of error up to 30 persons. The MAE in
Copenhagen is even lower, at 7.4 persons, despite the fact
that the aggregated units are larger than the ones in Ams-
terdam. Error is also significantly decreased compared to
the heuristic estimates of both the PI and WI methods,

for all the age groups and the largest groups by migration
background. However, all models produce similar scores
for the smaller migrant groups. The small number of per-
sons in these groups, and their high concentration in neigh-
bouring areas, are well represented in the initial estimates
of the WI heuristic, explaining these similarities. Lastly,
the high percentage of non-inhabited cells for these small
groups has a great impact on the results. With the MAE
and SD only, it is difficult to estimate the spatial accuracy.

In spite of combining multiple target variables at once, the
performance of RFm is poor and can only be compared
to PI, WI, and GB100. The quality of its results does not
improve even if the model’s capacity and training time in-
crease significantly, as Table 4 indicates. Moreover, a rea-
sonable decrease is noticed in the errors for the GB mod-
els, as their capacity increases. Even though the first ex-
periments with 100 estimators showed a low performance,
they presented interesting spatial patterns with richer vari-
ability (further discussed in Section 5.2) than RFs. The er-
ror falls significantly at 500 estimators, at the cost of a
much higher training time (although this can be signifi-
cantly reduced if training the GB models on a GPU).

5.2 Visual Inspection of Maps and Errors

The disaggregation predictions can be mapped and com-
pared directly to the ground-truth gridded data, giving us
the opportunity to evaluate the performance of the mod-
els based on their spatial accuracy at high resolution.
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Figure 2. Distribution for the total population in Amsterdam, comparing ground truth counts (top-left) versus predictions: RFs (top-
right), RFm (lower-left), GB500 (lower-right).

Due to the fact that each case study includes many vari-
ables, corresponding to different population subgroups, we
choose to focus our detailed analysis on the total popula-
tion (Fig. 2 and 3), although also presenting some indica-
tive variables based on the size of the subgroups (Fig. 5).

Specifically, Figures 2 and 3 illustrate the distribution of
the total population predicted by the 3 main models, in tan-
dem to the ground truth distribution as reported by the sta-
tistical offices of the case study areas. It is evident in both
cases that the RFs100 and the GB500 predictions show
high spatial heterogeneity that approximates the real val-
ues. On the other hand, as expected from the MAE results,
the population distribution predicted by RFm100 remains
homogenised in each of the aggregated zones, similar to its
original input layer, which was produced by the weighted
interpolation method. Table 4 reports that this deficiency
is not enhanced by increasing the capacity of the multi-
variate random forest and, regardless of its high flexibility
and short training period, RFm is deemed unsuitable for
accounting spatial heterogeneity at high resolution.

Considering the 2 best models – RFs100 and GB500 – in
particular, their differences are relatively small and vary
between the cases. Figure 4 represents the percentage er-
ror by grid cell for these 2 models, for each case, to fa-
cilitate their comparison and highlight their strengths and
weaknesses. Starting from Amsterdam, RFs100 recog-
nises more accurately the densely populated cells of West,
but fails to distinguish the non-inhabited areas in the west-
ern part of Noord (industrial area of Nieuwendam) and in
Zuidoost. Both models have poor performance in Rem-
brandpark and by the lake of Sloteplas in Nieuw-West, in
the industrial area of Oost, and in the port of Oosterlijke
(Fig. 4, upper). In Copenhagen, the predicted population
distribution is continuous in both models, including low
values in all cells of the study area. Nonetheless, GB500
predicts more accurately the densely populated areas, es-
pecially in the northern part of the municipality of Copen-
hagen (Brønshøj, Vanløse), on Amager and in the western
part of the city (municipalities of Ishøj and Vallenbæk),
with the general pattern of low error values being reduced
from 4 to 1 person per grid cell, as the estimators increase
(Fig. 4, lower). The highest percentage error is noticed in
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Figure 3. Distribution for the total population in Copenhagen, comparing ground truth counts (top-left) versus predictions: RFs (top-
right), RFm (lower-left), GB500 (lower-right).

natural and industrial areas outside the urban fabric, as no-
ticed in the scatter plot of Figure 6.

In order to try explaining the above observations, we as-
sess the role of the input layers by examining the weights
of importance for the included variables, for RFs100 and
GB500 and for each of the case studies. The importance
weights are compared against the distribution of the er-
rors by land coverage. The bar chart for Amsterdam in
Figure 6 (upper-left) shows high variations between the
models, with the weights of GB500 being distributed in a
more balanced way. The ancillary variable corresponding
to residential coverage gains the highest weight, while the
layers of green spaces, water coverage, and transportation
are inadequately weighted in RFs100, rising the error in
the corresponding areas. Apparently, neither the residen-
tial coverage nor the height of the buildings are adequate
to increase the accuracy in the inhabited areas of the urban
fabric, where our primary concern is focused.

Nevertheless, information on the age of housing in combi-
nation with the building height enhances the performance
of the model significantly, as shown in the case of Copen-
hagen where the predictions are slightly lower than the
ground truth for cells with medium-high values (50-100

persons). This is in accordance to both examined mod-
els, even if their weights are switched. In contemplation
of improving the results of Copenhagen outside the urban
fabric, and for comparability reasons to Amsterdam, we
performed an additional experiment with RFs100 using 12
ancillary input layers, including the original 3 ones along
with the layer for residential coverage, 4 binary layers for
land coverage, and 4 layers for describing proximity to
transportation, cultural spaces and schools. According to
Table 4, the use of more layers leads to inadequate results,
which do not meet the scores of the other models. The
higher accuracy observed in the experiments with detailed
datasets entails that the targeted selection of training input
achieves more satisfactory outputs, at least in inhabited ur-
ban areas. It should lastly be mentioned that none of the
examined models succeeds on predicting the higher real
values noticed in either of the cases, showing smoother
distributions among the cells of each source zone.

Figure 5 illustrates the distribution of mobile adults and
migrants outside EU, as predicted by GB500, along with
the ground truth counts for Amsterdam in the top row and
for Copenhagen in the lower one. The mobile adults are
chosen as an indicative age group with high population,
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Figure 4. Absolute percentage error in the distribution of the total population for the regions of Amsterdam (upper) and Copenhagen
(lower), for RFs100 (left) and GB500 (right).

Figure 5. Distributions for two indicative population subgroups in Amsterdam (mobile adults and non-Western migrants) and Copen-
hagen (mobile adults and non-EU migrants), comparing ground truth counts versus GB500 predictions.

and the non-western migrants, or migrants outside EU, are
choosen as population subgroups currently under public
discussion due to the recent growing migration flows to
Europe. It can be noticed that the model is able to pick
up patterns related to these specific groups to some ex-

tent, reaching a percentage accuracy of 55-65%. This per-
centage might not seem high enough, but we need to take
into consideration the fine resolution of the examined tar-
get zones and that the results are immediately compared to
ground truth data at the same detail.
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Figure 6. Importance of features for RFs100 and GB500 predictions (left), together with scatter plots comparing ground truth counts
versus GB500 predictions, by land coverage (right) and for total population.

Table 4. Percentage errors associated to different regression models, for each case study region.

Amsterdam Copenhagen

Model RFs100 RFs500 GB500 Model RFs100 RFs500 GB500
Ancillary Data ams12 ams12 ams12 Ancillary Data cph3 cph12 cph3 cph3
Total Population 171.66 171.75 135.09 Total Population 160.77 262.6 160.68 147.72
Age Groups
Children 48.3 48.31 38.94 Children 32.58 55.86 32.57 37.31
Students 65.12 65.09 56.63 Students 34.32 63.13 34.44 30.02
Mobile Adults 53.0 53.18 44.16 Mobile Adults 30.56 59.93 30.55 32.91
Not Mobile Adults 44.67 44.73 36.93 Not Mobile Adults 30.85 57.04 30.81 34.5
Elderly 32.1 32.02 28.22 Elderly 28.96 40.87 28.96 31.38
Migration Status
Natives 83.63 83.57 66.32 EU 44.43 64.78 44.44 41.61
Western 46.92 46.94 38.81 Not EU 44.45 64.81 44.48 41.67
Non-Western 47.73 47.64 42.18 Natives 118.46 199.76 118.39 108.76
Suriname 30.38 30.39 26.53 Australia and New Zealand -0.17 -0.18 -0.17 -0.16
Turkey 21.04 21.11 19.58 Eastern Asia 0.1 - 0.57 0.1 0.7
Antilles 9.57 9.58 9.08 Eastern Europe 3.77 2.62 3.77 3.68
Morocco 34.06 34.17 32.42 Lat. Am. and the Caribbean 0.36 -0.46 0.36 0.89

Northern Africa 2.07 0.41 2.07 2.56
Northern America 0.39 -0.32 0.39 0.9
Northern Europe 4.0 4.1 3.97 3.51
South-eastern Asia -0.05 -0.78 -0.05 0.61
Southern Asia 11.39 10.05 11.38 9.93
Southern Europe 4.68 3.46 4.67 5.07
Sub-Saharan Africa 3.39 1.68 3.39 4.04
Western Asia 16.7 15.89 16.68 14.46
Western Europe 2.37 1.46 2.37 2.63
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6 Conclusions and Future Work

In this work, we discussed the potential of multi-output
regression models for spatially disaggregating population
groups, and performed a comparative study with a method-
ology based on self-training random forests or gradient
tree boosting regression models. We evaluated the results
on ground truth data at the target resolution of 100 me-
ters, and demonstrated that gradient boosting with a cus-
tomised loss function outperforms random forest regres-
sion. This method is not only more convenient for multi-
output predictions, but it also achieves high accuracy re-
sults in densely populated areas, with a small amount of
input layers that characterise the building features and can
be easily accessed. Initialising the disaggregation proce-
dure with heuristics based on seminal approaches, such
as pycnophylactic interpolation or an heurisitic dasymet-
ric weighting approach, we compared single- and multi-
output random forest models to a multi-output gradient
boosting regressor. Through tests with two case study ar-
eas, we concluded that the multi-output gradient boosting
regressor obtains similar or higher quality to the single-
output random forests, producing results with higher spa-
tial heterogeneity. The results produced by gradient boost-
ing are also more interesting in densely populated areas,
which are the major areas of interest.

Despite the interesting results, there are still many open
challenges to work on in the future. Decreasing the long
training period (3-5 days based on the extent of the study
area, with a single laptop CPU) is one of our priorities, and
different software libraries (e.g., Tensorflow) can perhaps
be used to train gradient boosting decision trees on a GPU.

Furthermore, our experimental results in Copenhagen
showed that a small amount of targeted ancillary datasets
can achieve high quality predictions in densely populated
areas, but low accuracy in non-populated cells in suburban
areas. Taking this observation into account, it may be inter-
esting to explore other sources of ancillary information to
address the poor performance in agricultural and industrial
areas, or include Earth observation data in a more efficient
combination of training input.

7 Data and Software Availability

All the used source code, together with a selection of vi-
sualisations for the results, is available on a GitHub repos-
itory1, and can be openly re-used for similar analyses. The
datasets used in the experiments are described in Section 4,
and most of them are publicly available. The workflow
underlying this paper was partially reproduced by an
independent reviewer during the AGILE reproducibil-
ity review and a reproducibility report was published at
https://doi.org/10.17605/osf.io/10.17605/OSF.IO/CDFAH.

1https://github.com/mgeorgati/spDisag
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