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Abstract.  Unmanned Aerial System (UAS) imagery has 

enabled very high-resolution multispectral image 

acquisition. Detection of wet areas and classification of 

land cover based on these images using the Machine 

Learning (ML) algorithm named Random Forest (RF) is 

our main purpose in this paper. Very high-resolution UAS 

images have been used as inputs for a machine learner to 

access the capability of different spectral bands and 

spectral vegetation indices, elevation, and texture features 

in the classification of land cover and detection of the wet 

riparian area in the case study in two different epochs. 

There are many existing methods for the classification of 

land cover based on UAS images, but very high-resolution 

centimeter-level data are of main importance in this 

analysis. Outstanding results have been produced in both 

epochs considering three extremely accurate performance 

analysers. Additionally, in this research, the most decisive 

and effective features have been discovered to 

compromise accuracy and the number of effectual 

features.  

Keywords. Machine learning, classification, UAS, 

spectral features, land cover. 

1 Introduction 

Classification of land cover to detect wet and moist areas 

is highly important for urban and environmental planning 

(Chaturvedi and de Vries, 2021). Furthermore, one of the 

crucial pillars of climate change is connected to water in 

different media, from lakes and rivers to soil water. Hence, 

detecting water in various environmental media is one of 

the essential steps in facing climate change (Lidberg et al., 

2020). Today, the widespread use of UAS imagery has 

provided a variety of very high-resolution image data 

sources for machine learning classifiers. The efficiency 

and potential of machine learning classifiers have made the 

classification purpose more precise and efficient (Jiang et 

al., 2021). UASs outperform traditional approaches for 

data acquisition thanks to their high temporal and spatial 

resolution (Merlino et al., 2020; Banerjee et al., 2020). 

Considering their low cost, it is possible to have several 

flights in different epochs (Jiménez-Jiménez et al., 2021). 

After data acquisition, to have a 3D map of the area, 

Structure from Motion (SfM) approach was implemented. 

There are several methods for the classification of 

multispectral UAS data (Iglhaut et al., 2019). RF Classifier 

is based on the decision of several trees (Rodriguez-

Galiano et al., 2012; Lowe and Kulkarni, 2015). In this 

study, the performance of RF classifier in classification 

and wet area detection, based on three different 

combinations of spectral bands will be assessed, and then, 

the classifier’s improvement after adding some extra 

features including spectral indices, elevation, and texture 

features will be analysed, and the most effectual features 

for classification of land cover and detection of wet soil 

and waterbed will be discovered. Another objective of this 

study is to investigate the performance of datasets (number 

of considered features) in the classification and if adding 

other features, including elevation (Normalized Digital 

Surface Model (nDSM)), spectral (thermal data and 

vegetation indexes), and texture features can be of benefits 

for classification. There are several studies to investigate 
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the classification capability based on an RF classifier 

(Jiang, et al., 2021; Rodriguez-Galiano, et al., 2012), but 

focusing on the goal of wet area detection considering 

different combinations of very high-resolution 

multispectral bands and adding other features, including 

elevation, spectral (thermal data and vegetation indexes), 

and texture in two different epochs highlights the 

innovation of this research.  

 

2 Methods 

The first step is to produce orthophotos and DEM based on 

SfM from raw UAS multispectral data; for classification, 

only three classes are considered: Vegetation, Water, and 

Ground. The dataset was acquired in two temporal epochs 

of April and July, and processing started with the April 

epoch. Three different datasets consisting of RGB, 

Multispectral (Red-Edge (RE), Near-Infrared (NIR)), 

RGB plus Multispectral for classification have been used.  

2.1 Study Area 

For this study, data has been acquired in the Salbertrand 

town in northwest Italy in two different epochs of April 

and July. Salbertrand, as is shown in Fig. 1, is a 

municipality in the province of Torino with an elevation of 

1039 meters and studied riparian area located in the 

Salbertrand.  

 

 Figure 1. Salbertrand town, study area. 

 

2.2 Data and Software Availability  

Data were acquired using a commercial solution drone DJI 

Phantom 4. The drone contains a RGB sensor and separate 

blue, green, red, RE, and NIR sensors. During the data 

collection, some GCPs have been surveyed to assess the 

accuracy of the georeferencing of the embedded GNSS 

dual-frequency sensor. To perform the SfM, Agisoft 

Metashape software has been utilised. For machine 

learning, python language 3.8 with the scikit-learn 

package has been used; furthermore, we used open-source 

QGIS 3.22 software to pre-process the orthophotos and 

prepare the data to import into python for machine 

learning. 

2.3 Structure from Motion 

SfM technique works on the fact that several images are 

acquired from different angles from the area and 

overlapped photogrammetry produces 3D structures 

(Iglhaut et al., 2019). On-board Global Positioning System 

(GPS) of the UASs allows for location data acquisition in 

the collection phase, and to increase the positioning 

accuracy, Ground Control Points (GCPs) are collected 

during the campaign; in this way, the result is a high 

accuracy Digital Elevation Model (DEM) and orthomosaic 

of the study area (Turner et al., 2012). The flowchart in 

Fig. 2 represents the main steps included in the SfM 

(Iglhaut et al., 2019). After adding the images of each band 

into the software, the automatic interior orientation of the 

camera has been performed, then the images are aligned. 

By adding GCPs, georeferencing of the aligned photos is 

done and alignment is repeated to be optimized based on 

GCPs, then, the dense cloud is produced in the software 

based on the interpolation technique and a mesh is 

produced based on the dense point cloud, then the texture 

data is injected from the images into the 3D model. Finally, 

using the tools of the software, by-products of orthophotos 

of five spectral bands and DEM are produced. Orthophotos 

will be used in the next step to perform machine learning.  

In Tab. 1, results of georeferencing accuracy for 

checkpoints in all bands are presented for the April epoch, 

which is considered as a measure of 3D model accuracy.  

 

Figure 2. The procedure of SfM. 

 

Table 1. Total error of check points in all spectral bands. 

Band Total Error (m) 

Red 0.047 

Green 0.056 

Blue 0.048 

Red-Edge 0.041 

NIR 0.05 
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2.4 Random Forest Classifier 

Random Forest classifier is based on several decision 

trees, in which for classification purposes, each tree 

decides a class, and at the end, the class with the 

maximum number of votes is selected as a class for the 

input (Maimaitijiang et al., 2020). Classification in April 

has been tested on three different datasets: a) combination 

of RGB and multispectral datasets b) RGB datasets c) 

Multispectral datasets including RE and NIR bands. To 

perform the pixel-based classification, two different 

portions of the study area are clipped, one for training and 

one for testing and validation. These spatial portions will 

remain constant spatially for different input datasets to 

have an analytical comparison at the end. The following 

steps have been performed for all datasets to have a final 

classified map and an evaluation of the accuracy of the 

results. Training and validation areas and their respective 

polygons are demonstrated in Fig. 3. 

 

a) Data preparation for Training dataset- QGIS 

b) Cross-validation- Python 

c) Data preparation for Testing dataset- QGIS 

d) Classification of Unseen testing dataset- Python 

e) Data preparation for Validation dataset- QGIS 

f) Validation- Evaluation of classification goodness- 

Python 

 

Figure 3. Top: Training area (NIR-G-R visualization) with 

polygons of three classes, Bottom: validation area (RGB 

visualization) with polygons of three classes. Blue for water, 

yellow for ground, green for vegetation. 

The processing phase started with the April epoch. In the 

summer epoch, the best-selected dataset from the previous 

epoch beside extra features including nDSM, thermal and 

vegetation indexes, and texture features including 

Angular Second Moment, Contrast, Correlation, 

Variance, Inverse Difference Moment, Sum Average, 

Sum Variance, Sum Entropy, Entropy, Difference 

Variance, Difference Entropy, Information Measures of 

Correlation, Maximal Correlation Coefficient are added 

to assess the classification quality (Haralick et al., 1973) 

and to find out about the most effective features in the 

classification of the area using RF. 27 attributes for each 

pixel are available in this dataset. Tab. 2 shows different 

spectral indexes. The most essential features are selected 

using the “Select from Model” function in the scikit-learn 

package. Based on this tool, optimization is applied to the 

number of most effective and important features based on 

a median threshold. 

2.5 Performance Assessment 

Classification goodness is examined through evaluation 

tools. For this purpose, first, some concepts for accuracy 

assessment should be established: True Positive, True 

Negative, False Positive, False Negative (Williams, 

2021). 

• True Positive (TP): positive outcomes that the model 

predicted correctly. 

• True Negative (TN): negative outcomes that the 

model predicted correctly. 

• False Positive (FP): positive outcomes that the model 

predicted incorrectly.  

• False Negative (FN): negative outcomes that the 

model predicted incorrectly.  

• Precision: Number of correct positive results divided 

by the number of positive results predicted by the 

classifier. Eq. (1) is used to calculate the precision.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (1) 

• Recall: Number of correct positive results divided by 

the number of all actual samples. Eq. (2) is used to 

calculate the recall.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (2) 

• F1 Score: Weighted average of precision and recall 

and it represents how robust the classifier is. Eq. (3) 

is used to calculate the F1 score.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
= 

𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

               (3)  
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3 Results and Discussion  

3.1 April Epoch 

Based on Tab. 3, it can be recognised that RGB alone 

cannot produce accurate results for classification using RF 

but adding data from other spectral bands can improve the 

results. Water class is almost got detected in multispectral 

and combined datasets in all cases, but misclassification 

between ground and vegetation is still present even in the 

multispectral dataset. Classified areas into Vegetation and 

Ground have problems related to the constitution of the 

riverbed and the non-evergreen vegetation present in the 

investigated area during the cold season, besides, because 

of the attendance of shadow in the acquisition time in 

April, RF has difficulty in the classification. In Fig. 4, the 

results of the classification in the test area with three 

different datasets are visualised. Since, the best-selected 

dataset for this epoch is based on five spectral bands 

together, in the July epoch, only this dataset is used for the 

classification, furthermore, in the July epoch, some other 

features are added. 

 

 

 

Index 
Abbrev

iation 
Formula Author and Year 

Normalised Difference 

Vegetation Index 
NDVI 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (Abderrazak et al., 1996) 

Normalised Difference Water 

Index 
NDWI 

𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (Ceccato et al., 2002) 

Normalised Difference Red-Edge NDRE 
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 (Clarke et al., 2001) 

Anthocyanin Reflectance Index ARI 
1

𝐺𝑟𝑒𝑒𝑛
−

1

𝑅𝐸
 (Miura et al., 2008) 

Enhanced Vegetation Index 2 EVI2 2.4 ∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 1
 (Miura et al., 2008) 

Soil Adjusted Vegetation Index SAVI 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
∗ (1 + 𝐿) (Ahamed et al., 2011) 

Structure Insensitive Pigment 

Index 
SIPI 𝑆𝐼𝑃𝐼 =

𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 − 𝑅𝑒𝑑
 (Xue & Su, 2017) 

Table 2. Information of different induces and author and year of introduction.  

Figure 4. Left: test area in different bands (top: R-G-B true 

colour, middle: RE-NIR, and bottom: NIR-G-R). Right: 

classification results (top: with RGB, middle: with RE & 

NIR, bottom: with RGB and RE and NIR), blue as water, 

green as vegetation, yellow as ground. 
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Figure 6. Importance of all features in percentage 

Table 3. Precision, recall, and f1 score for test areas considering 3 different combinations of spectral bands. 

 

Dataset Classes Precision (%) Recall (%) F-score (%) 

RGB 

Water  83  49  58 

Vegetation 57 97 72 

Ground 98 59 73 

RE + NIR 

Water 99 99 99 

Vegetation 65 67 66 

Ground 64 64 65 

RGB+ RE + NIR 

Water 99 81 89 

Vegetation 72 99 83 

Ground 99 73 84 

3.2 July Epoch 

In Fig. 5, the results of the classification of the test area in 

the July epoch with all 27 features are presented. Tab. 4, 

shows the results of precision, recall, and f-score of 91% 

on average for all classes considering 27 features. 

  

Figure 5. Top: RGB map of the test area. Bottom: classified 

map, blue as water, green as vegetation, yellow as ground.  

 

 

 

3.3 Feature Selection 

Fig. 6 shows the percentage of importance for each feature. 

As shown in Fig. 6, spectral indices including NDWI, 

EVI2, NDVI, SAVI, NDRE, and ARI are among the most 

effective features for classification, and from spectral 

bands, thermal and NIR and RE are the most important 

ones, and this is another proof that RGB dataset alone 

cannot achieve to the acceptable classification accuracies, 

even in summer epoch. Based on a median threshold, only 

14 features are used to implement the classification. The 

result of performance analysers with all features and with 

only the important ones are presented in Tab. 4. It can be 

shown that, with only essential features, accuracy is still 

promising and even is increased, which represents a nice 

compromise between number of features and accuracy 

score. 

 

Table 4. Results of performance analysis with all features vs 

important features. 

 

 

Precision 

(%) 

Recall 

(%) 

F-score 

(%) 

27 features 91.6 91.5 91.3 

14 features 93.2 92.6 92.7 
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4 Conclusion 

Following our aim of identifying wet areas effectively, and 

the classification of two other classes, it can be emphasised 

that the multispectral radiometric features acquired with 

very high-resolution multispectral imagery associated with 

RF were able to do so with an excellent degree of accuracy, 

either in the cold season or in the summertime, with some 

errors mainly related to shadows due to the lack of light 

during the acquisition phase and constitution of the 

riverbed and the non-evergreen vegetation present in the 

area. The composition of radiometric features with 

additional features, including elevation, thermal, 

vegetation indexes, and textures features, improves the 

classification even more to a degree of 91% on average. 

Meanwhile, a compromise between the number of features 

and classification accuracy results in a more realistic 

conclusion about selected features. Based on the results, 

researchers can focus on the most important features in 

their studies, to decrease the processing time and required 

power alongside achieving high accuracy for the 

classification. In future works, other machine learning 

methods, such as Support Vector Machine (SVM) and 

deep learning methods based on convolutional neural 

networks, can be taken into consideration to have a 

comprehensive analysis of the performance of different 

methods for wet area detection and classification.   
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