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Abstract. We present the results from evaluating various
Convolutional Neural Network (CNN) models to com-
pare their usefulness for forest type classification. Ma-
chine Learning based on CNNs is known to be suitable
to identify relevant patterns in remote sensing imagery.
With the availability of free data sets (e.g. the Coperni-
cus Sentinel-2 data), Machine Learning can be utilized for
forest monitoring, which provides useful and timely in-
formation helping to measure and counteract the effects
of climate change. To this end, we performed a case study
with publicly available data from the federal state of North
Rhine-Westphalia in Germany. We created an automated
pipeline to preprocess and filter this data and trained the
CNN models UNet, PSPNet, SegNet, and FCN-8. Since
the data contained large rural areas, we augmented the im-
agery to improve classification results. We reapplied the
trained models to the data, compared the results for each
model, and evaluated the effect of augmentation. Our re-
sults show that UNet performs best with a categorical ac-
curacy of 73% when trained with augmented imagery.
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1 Introduction

Climate change, one of the most important topics of our
time, leads to increasing temperatures, extreme weather
events, floods, wildfires, and other global effects (Watts
et al., 2021). It not only has a negative impact on the envi-
ronment, but also directly on humans. According to Watts
et al., “in the past two decades, heat-related mortality in
the over-65 population has increased by 53.7%, reaching
296,000 deaths in 2018”. In addition, there is an increased
risk of infectious diseases, respiratory diseases, and under-
nutrition due to food insecurity (Watts et al., 2021).

An important factor in the issue of climate change are
forests. On the one hand, they are severely damaged by

climate change itself (Senf and Seidl, 2021). On the other
hand, forests are a crucial parameter to counteract its ef-
fects. In Germany alone, forests absorb about 52 million
tons of carbon dioxide annually (Federal Ministry of Food
and Agriculture, 2022a). Therefore, it is particularly im-
portant to act against forest dieback. For this, precise envi-
ronmental monitoring is of great importance. The forests
in Germany (and other global regions) are currently inven-
toried manually every 10 years (Federal Ministry of Food
and Agriculture, 2022b). This is associated with very high
costs and large efforts. At the same time, this interval is too
long, as it is particularly important to be able to quickly re-
act to the dynamic changes (Banskota et al., 2014).

For these reasons, there is great potential in forest mon-
itoring based on remote sensing data, which is available
with high temporal resolution (mostly for free, e.g. Coper-
nicus Sentinel-2 imagery). It has already been shown that
various Machine Learning approaches, especially those in-
volving Convolutional Neural Networks (CNN), have the
ability to recognize relevant patterns from these recordings
(Wessel et al., 2018; Yang et al., 2018).

However, there is a gap in literature as there is, to the best
of our knowledge, no publication yet that compares dif-
ferent CNN models and investigates their usefulness for
forest type classification. We believe that such a compari-
son would provide useful insights for researchers and other
stakeholders involved in forest monitoring and would help
them select a suitable model for their use case.

In this paper, we therefore present the results of a case
study we conducted with the aim to evaluate various CNN
models for forest type classification. For this case study,
we selected a suitable study area, trained the widely used
UNet, FCN-8, SegNet, and PSPNet models with publicly
available remote sensing data from this area, performed an
evaluation, and then compared the results. In this process,
we also identified the lack of ground-truth data as a com-
mon problem during training. To improve the accuracy of
the trained models, we augmented the training data by ran-
domly transforming the source images.
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2 Related Work

Analyzing remote sensing data with Machine Learning has
become increasingly popular in recent years (Ma et al.,
2019). One of the most active application areas in this
respect is land use and land cover (LULC) classification
(Feng et al., 2017). Random Forest (RF), Support Vector
Machine (SVM), and CNN approaches have been used for
classification, which all deliver good results (Thanh Noi
and Kappas, 2017). Raczko and Zagajewski (2017) com-
pared SVMs, RFs and CNNs for LULC classification and
showed that CNNs outperform the other two approaches.

However, there still is a gap in knowledge in the field
of forest type classification (Mäyrä et al., 2021). Existing
works have focused on the use of hyperspectral data (Pan
et al., 2018) or even the combination of hyperspectral and
LiDAR images (Mäyrä et al., 2021), but these data are not
freely available and their temporal resolution is quite lim-
ited. Wessel et al. (2018) have already obtained good re-
sults using Sentinel-2 imagery. They used RF and SVM
approaches and claim that images from the month of May
are best for forest type classification.

Selecting the right Sentinel-2 bands is crucial for classifi-
cation quality. Wessel et al. (2018) obtained good results
with bands 6 (mid red edge), 7 (long red edge), and 8
(NIR). A drawback with this selection is that bands 6 and
7 only have a resolution of 20 meters per pixel. Persson
et al. (2018) used all bands and also obtained good results.
More channels provide a deeper input layer. However, a
deeper network is harder to train (Du et al., 2019). An-
other approach is to use bands 2 (blue), 3 (green) and 8
(NIR). Ng et al. (2017) achieved good results with them
and showed that the higher resolution of these bands has a
positive effect on accuracy.

Various papers have compared the usefulness of CNN
models for LULC classification. For example, Zhang et al.
(2020) covered UNet (Ronneberger et al., 2015), PSPNet
(Zhao et al., 2017), and SegNet (Badrinarayanan et al.,
2017) models. The PSPNet and UNet performed best. On
the other hand, Storie and Henry (2018) obtained the best
results with a FCN-8 (Long et al., 2015). Additionally, Sti-
vaktakis et al. (2019) showed that CNN models with prior
augmentation outperform all CNN models without aug-
mentation. This is a relevant aspect since labeled training
data in the field of LULC and forest type classification are
rare (Chen et al., 2014; Pan et al., 2018).

The papers mentioned above cover LULC, but, to the best
of our knowledge, there is no existing publication com-
paring different CNN models for forest type classification.
This is a research gap that we aim to close with this paper

3 Case study

In the following sections, we describe a case study we per-
formed with the aim to classify forest types using a CNN.

For this, we had to select a study area with publicly avail-
able imagery and then prepared and filtered the data with
an automated pipeline. Since the selected area was mostly
rural, we had to augment the data to generate more input
images. We then trained UNet, PSPNet, SegNet, and FCN-
8 with 80% of the data, applied the CNNs to the remaining
20% and compared the results.

3.1 Study Area

The German state of North Rhine-Westphalia (NRW)
provides geodata about forest type distribution for
free (MULNV Nordrhein-Westfalen, 2022). It is served
through an OGC Web Map Service (WMS). The data
is based on cadastral information and distinguishes be-
tween deciduous, coniferous, mixed forests, as well as ar-
eas without forests. NRW has an area of 34,000 square
kilometers and is located in the northwest of Germany.
Predominant parts of it are populated, which means that
the relative proportion of forest is low. We queried the
WMS in March 2022.

In addition, we used Sentinel-2 imagery from the Coperni-
cus project. The data is freely available and can be queried
via an API (Copernicus, 2022). We used six cloud-free im-
ages taken on May 7, 2020.

3.2 Data Preparation

To prepare the data for training, we created a processing
pipeline with several steps. The pipeline executes these
steps automatically one after the other and generates train-
ing data suitable for the different CNN models. Most of
the steps are the same for all models, only the Split step
produces images in different resolutions.

1) Search The pipeline searches the Copernicus project
database for satellite images that were taken in the desired
time period, show the surface of NRW, and have as few
clouds as possible. Since the images contain metadata, the
search is easily possible via the Copernicus API.

2) Download The selected satellite images are down-
loaded to our servers. Copernicus delivers them as archives
containing different bands and several metadata files.

3) Filter Bands The pipeline extracts the files relevant for
us from the archives. The training requires bands 2 (blue),
3 (green), and 8 (NIR).

4) WMS An image pair is created that consists of ground
truth data from the North Rhine-Westphalia WMS and the
already downloaded satellite image for the same area. For
this, we download the PNG maps from the WMS and in-
terpret the pixels as forest type classifications.

5) Split This image pair covers an area of 100× 100 kilo-
meters and has a resolution of 10×10 meters. However, for
training, we need several small image pairs. The pipeline
splits the image pair into sub-images with a resolution suit-
able for the network to be trained. SegNet and FCN-8 use
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a resolution of 224×224 pixels as input, UNet and PSPNet
a resolution of 512× 512 pixels.

6) Filter Forest Images Finally, the image pairs are fil-
tered according to their forest proportion. For the subse-
quent training, only those image pairs are retained that
contain at least a forest fraction of 50% per image. This
results in the following distribution of the classes to be
trained.

• Non-forest: 28%

• Coniferous forest: 40%

• Deciduous forest: 19%

• Mixed forest: 12 %

• Invalid data: 1%

Although this distribution is not ideal, more filtering would
further reduce the data set. With this, the pipeline creates
about 1000 image pairs with a resolution of 224×224 pix-
els, as well as about 240 image pairs with a resolution of
512× 512 pixels.

3.3 Data Augmentation

As described above, large parts of NRW are rural. The
number of images we could use for training our CNNs was
rather low compared to the whole data set. We therefore
investigated how to deal with this. One way is to augment
the data. The idea is to get new information by transform-
ing the existing images. This increases the size of the data
set, which counteracts overfitting and improves accuracy
(Shorten and Khoshgoftaar, 2019). During augmentation,
we randomly applied between one and three of the follow-
ing geometric transformations to each image:

• Flip left-right

• Flip up-down

• Random rotation: [-180°,180°]

• Random scaling x, y: [0.7,1.3]

• Random translation x, y: [-20px,20px]

This ensured the augmenting was maximally randomized,
which resulted in strongly differing new images. We aug-
mented every image seven times in each epoch. Figure 1
shows some visual results of the augmentation.

3.4 CNN Models

To compare the classification quality of different CNN
models, we implemented UNet, PSPNet, SegNet, and
FCN-8. As mentioned above, these models already
achieved good results in LULC classification (Zhang et al.,
2020; Storie and Henry, 2018). We implemented them

Original Image

Augmented Image

Augmented Image

Augmented Image

Figure 1. Augmented images based on Copernicus Sentinel
data (2022)

Table 1. Used Hyper-Parameters for Training.

Parameter Value

Optimizer Stochastic Gradient Descent
Loss Function Categorical Crossentropy
Learning Rate 10−3

Decay 5−4

Momentum 0.9
Batch Size 16
Epochs 30

based on the original papers in Keras 2.4.3 (Chollet et al.,
2022) with the TensorFlow (Abadi et al., 2022) backend
in version 2.4.1. Our training parameters are shown in Ta-
ble 1. They are based on the work of Maeda-Gutiérrez
et al. (2020) who achieved good results with them.

For training, we used 80% of randomly selected image
pairs from the overall data. Furthermore, we implemented
a batch-based approach. This means that the entire data did
not have to be prepared as a whole and then pushed into
the GPU for training, but rather only the data of one batch,
one after the other. This approach had the benefit that the
training could already begin in parallel with the prepara-
tion of the remaining data. In addition, the processed data
did not have to be stored on the hard disk first, but could
be pushed directly into the GPU.

4 Results

After we had used 80% of the data for the training above,
we applied the models to the remaining 20% to evaluate
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Figure 2. Comparison of Categorical Accuracies between the
different CNN models.

Table 2. Normalized Confusion Matrix of the augmented UNet.
(1) Non-forest, (2) Coniferous forest, (3) Mixed forest, (4) Desid-
uous forest

Predicted class

1 2 3 4

G
ro

un
d

tr
ut

h

1 0.85 0.10 0.01 0.04
2 0.08 0.87 0.02 0.03
3 0.15 0.52 0.15 0.18
4 0.18 0.22 0.01 0.59

their quality. Figure 2 summarizes the results. It shows the
Categorical Accuracy of each model when trained with the
original input data as well as the augmented images.

Augmentation has a positive effect on the accuracy of all
models. For the FCN-8 model, we achieved an improve-
ment of 16%. A potential reason for this is the number
of parameters of the FCN-8, which is significantly higher
compared to the rest of the models but also requires more
data for training. This clearly shows that augmenting the
data is a good way to extend the training data in this use
case and achieves better accuracy. Furthermore, we no-
ticed during our evaluation that the maximum accuracy
is reached with the generation of 7 new images per im-
age. Both fewer and more augmentations per image have
a negative impact on accuracy.

Overall, the UNet achieves the best accuracy with 73%.
This result is also in line with the publication of Zhang
et al. (2020) on the LULC classification, where UNet also
performed best. In the study of Storie and Henry (2018),
the FCN-8 model performed best, but it is not known ex-
actly with which other models the comparison was made.

For a more detailed evaluation of the augmented UNet
model, the normalized confusion matrix is shown in Ta-
ble 2. It can be seen that the detection of non-forest ar-
eas and coniferous forest works very well. The recognition
of deciduous forest does not perform as well. One reason
for this is that deciduous forest is underrepresented in the
training data.

RGB-Image

(1) (2) (3) (4)

Ground truth

Predicted Image
Figure 3. A RGB-, ground truth- and predicted image from our
model.(1) Non-forest, (2) Coniferous forest, (3) Mixed forest, (4)
Desiduous forest. The RGB image contains modified Copernicus
Sentinel data (2022)
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Mixed forest is almost not recognized at all. This is also
due to underrepresentation but mainly to the characteris-
tics of a mixed forest, which consists of deciduous trees
and conifers. Therefore, the model recognizes the compo-
nents of the mixed forest instead of classifying it as such.
Figure 3 shows a satellite image, a ground-truth image as
well as the image as classified by our model. In this pre-
dicted image, the described behaviors already seen in the
confusion matrix are visible.

5 Conclusion

In this paper, we compared four different CNN models and
evaluated their usefulness for forest type classification. To
this end, we performed a case study with publicly available
data including imagery from the Copernicus Sentinel-2
mission. We created an automated pipeline to preprocess
and filter the data and augmented it to improve classifica-
tion accuracy. We then trained all four models and reap-
plied them to the input data to evaluate their quality.

Our results show that UNet performs best with an accu-
racy of 73%. This result also shows that data augmentation
has a positive impact on the classification, as UNet only
achieved an accuracy of 67% with the original, unaug-
mented data.

It must be pointed out that, for the sake of comparability,
we applied training and classification only to those images
that our pipeline retained after filtering in step 6 (those that
consisted at least of 50% of forest). For this filtered set of
images, UNet already achieved a good accuracy, but, as
a reference, we also applied UNet to the entire unfiltered
data set (all of NRW). Here, it achieved an even higher
accuracy of 93%.

These results show that CNNs are well-suited for forest
type classification. Using them for forest monitoring could
be of great potential. We believe that this is a necessary
step towards understanding the impact of climate change
on our Earth and to save the forests, which play an impor-
tant role in counteracting negative global effects.
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