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Abstract. This research assessed the influences of four 
band combinations and three types of pretrained weights 
on the performance of semantic segmentation in 
extracting refugee dwelling footprints of the Kule refugee 
camp in Ethiopia during a dry season and a wet season 
from very high spatial resolution imagery. We chose a 
classical network, U-Net with VGG16 as a backbone, for 
all segmentation experiments. The selected band 
combinations include 1) RGBN (Red, Green, Blue, and 
Near Infrared), 2) RGB, 3) RGN, and 4) RNB. The three 
types of pretrained weights are 1) randomly initialized 
weights, 2) pretrained weights from ImageNet, and 3) 
weights pretrained on data from the Bria refugee camp in 
the Central African Republic). The results turn out that 
three-band combinations outperform RGBN bands across 
all types of weights and seasons. Replacing the B or G 
band with the N band can improve the performance in 
extracting dwellings during the wet season but cannot 
bring improvement to the dry season in general. 
Pretrained weights from ImageNet achieve the best 
performance. Weights pretrained on data from the Bria 
refugee camp produced the lowest IoU and Recall values. 

Keywords. Remote sensing, refugee dwellings, semantic 
segmentation, band selection, pretrained weights.  

1 Introduction 

1.1 Background 

Sustainable Development Goals (SDGs) 2, 3, 6, and 7 
emphasize the significance of distributing adequate living 
resources and health care services to refugees and their 

host countries based on the commitment “Leave No One 
Behind” (UNHCR, 2020). Population estimation of 
refugees in need is essential for logistics planning of the 
above resources during humanitarian operations (Çelik et 
al., 2012). However, it is usually difficult to collect such 
information in the field during conflicts. High-quality and 
updated footprints of refugee dwellings from satellite 
imagery could be beneficial for refugee population 
estimation (Checchi et al., 2013; Spröhnle et al., 2014), 
and thus, help achieve the related SDGs.  

1.2 Related work  

Deep learning approaches, especially Convolutional 
Neural Networks (CNN), have attracted researchers’ 
attention for remote-sensing-based refugee-dwelling 
extraction in the last five years. Ghorbanzadeh et al. (2018) 
designed a shallow CNN model to extract refugee 
dwellings in the Minawao refugee camp. They trained the 
model from scratch based on four spectral bands (RGBN) 
of WorldView imagery. The results prove CNN has a high 
potential in this extraction task from Very High Spatial 
Resolution (VHSR) satellite imagery. Ghorbanzadeh et al. 
(2021) further combined the designed CNN with Object-
Based Image Analysis (OBIA), which reveals the potential 
of combining CNN and expert knowledge for this task. 
Quinn et al. (2018) applied a Mask-RCNN model 
pretrained on the ImageNet dataset (Jia Deng et al., 2009) 
to extract dwellings in thirteen refugee camps. The model 
was trained with RGB bands of Google Earth imagery. Lu 
& Kwan (2020) compared the performance of two shallow 
CNN models, a deep fully CNN (FCN) model based on 
VGG16, and a Mask-RCNN model with ResNet-50 as a 
backbone in extracting refugee dwellings near Syria-
Jordan border. Both the FCN model and Mask-RCNN 
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model were fine-tuned based on pretrained weights from 
ImageNet. The results turn out that the FCN model 
outperforms the other four models. Wickert et al. (2021) 
chose a Faster-RCNN model pretrained on the COCO 
dataset (Lin et al., 2014) to count dwelling numbers in nine 
refugee camps based on RGB bands of Google Earth 
imagery. Tiede et al. (2021) selected an untrained Mask-
RCNN model to extract built-up structures in Sudan based 
on RGBN bands of Pléiades-1A satellite imagery. Gella et 
al. (2022) applied a Mask-RCNN model pretrained on the 
COCO dataset based on RGB bands of WorldView data.  

Based on findings from Lu & Kwan (2021), this research 
chose a semantic segmentation model for all experiments. 
Semantic segmentation algorithms can assign a label to 
each pixel in an image and produce a fine-grained 
delineation of target objects with embedded spatial 
information (Borba et al., 2021). We have test multiple 
semantic segmentation models during the preliminary 
stage. Eventually, we chose U-Net with VGG16 as a 
backbone for all segmentation experiments due to its 
effectiveness and efficiency. Besides, U-Net is one of the 
most popular architectures for detecting built-up structures 
from satellite imagery (Ansari et al., 2020; Jung et al., 
2021; Li et al., 2019). 

Most semantic segmentation models are adapted from 
deep CNN models pretrained on large image classification 
datasets such as ImageNet which consists of more than one 
million labelled images (Kemker et al., 2018). Using 
pretrained weights (or parameters) from large datasets is 
essential because most deep CNN models have millions of 
parameters. For example, VGG16 has around 138 million 
parameters (Simonyan & Zisserman, 2015). Limited 
annotated label data in remote sensing domains are usually 
incapable of computing proper settings for randomly 
initialized weights (Kemker et al., 2018). Therefore, 
choosing proper pretrained weights can play an important 
role in this extraction task. However, this topic has not 
been discussed.  

Furthermore, for multispectral satellite imagery with more 
than three RGB bands, band selection is significant before 
feeding data to CNN models (Kemker et al., 2018). Dixit 
et al. (2021) compared the performance of a semantic 
segmentation model (Dilated-ResUnet) under three 
datasets, 1) RGB bands, 2) NRGB bands, and 3) NRG 
bands of Sentinel-2 imagery. They found the dataset 
merged by NRG bands outperforms the other two datasets. 
This finding inspires us to assess the influences of the band 
selection for refugee dwelling extraction tasks from VHSR 
satellite imagery.  

1.3 Research problem 

To the best of our knowledge, it is still unknown that band 
combination performs best for refugee dwelling 
extraction. Besides, it is unknown whether seasonal 
changes can influence the performance of various band 

combinations. This research aims to fill this gap by testing 
the performance of four band combinations (RGB, RGN, 
RNB and RGBN) in extracting dwellings in the Kule 
refugee camp in Ethiopia under a dry season and a wet 
season. Additionally, we tested the influences of pretrained 
weights by comparing randomly initialized weights 
(RIW), pretrained weights from ImageNet, and weights 
trained on data of the Bria refugee camp in the Central 
African Republic (CAR). The outcomes of this research 
may shed light on the selection of bands and weights for 
similar tasks in the future.  

2 Methodology 

2.1 Data preparation Data and Software Availability 

The Kule refugee camp, located in the Gambella region, 
Ethiopia, was opened in 2014 in response to the major 
refugee influx from South Sudan and was fully occupied 
in 2016 (UNHCR, 2020a). Bria refugee camp is located 
in eastern CAR. The brutal attacks caused by religious 
conflicts displaced over 40000 people in 2017 (Médecins 
Sans Frontières, 2018). Fig. 1 presents examples of 
dwellings in the two camps. We can observe that the 
appearances of dwellings and background are different 
across two camps and two seasons. 

We chose satellite imagery from the Pléiades-1 sensor 
with a resolution pandsharpened to 0.5m in GeoTIFF 
format for both camps. Considering the area of refugee 
dwellings in the two camps mainly ranges from 8m2 to 
50m2, the original resolution (2m) makes models 
incapable of detecting small dwellings. The Kule imagery 
of the dry season and the wet season was retrieved on 24 
March 2017 and 22 June 2018 respectively. We use binary 
classes that are “built-up structures” and “background” in 

Figure 1. Examples of dwellings in the Kule refugee camp 
during the dry season (a) and the wet season (b), and in the Bria 
refugee camp (c). 
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label data. The label data were produced by OBIA and 
post-processed by manual correction (Lang et al., 2020). 
The testing label data were manually annotated and 
checked by two experts in ArcGIS 10.7 software. The 
polygon label data were converted to GeoTIFF format 
with the same resolution. We eventually created 8286 
training patches and 921 validation patches in a shape of 
(128, 128) pixels (Gella et al., 2021) with an overlap of 32 
pixels, 612 testing patches without any overlap. The data 
of the Bria camp were processed in the same way above. 
6568 patches were produced to create initial weights for 
Kule cases. 

2.2 Architecture and model set-up 

U-Net was firstly developed for biomedical image 
segmentation (Ronneberger et al., 2015), which follows 
an encoder-decoder structure. The encoder path is 
designed to capture features of input images. The decoder 
path is the symmetric expansion of the encoder path, 
which could help enable precise localization. It requires 
no dense or fully connected layers, and thus, can render 
the learning process in an end-to-end fashion. VGG16 
architecture wined ILSVRC in 2014 (Simonyan & 
Zisserman, 2015). We implemented the model based on 
the Segmentation Model Python library (Yakubovskiy, 
2019). The brief structure of the model could be found in 
Fig. 2. Besides, we selected balanced cross-entropy loss 
as a loss function due to the high imbalance between the 
two classes (Zhou et al., 2017). The percent of pixels of 
built-up structures is only round 2%.  

For other hyperparameters, the batch size is 32. Adam 
optimizer was chosen due to its fast speed in convergence 
(Bock et al., 2018). The model was trained by 200 epochs 
with 4x10-4 as an initial learning rate and 2x10-6 as a decay 
rate. We used NVIDIA RTX3090 GPU to train and test 
models in TensorFlow 2.7 environment. 

 

Figure 2. The structure of U-Net with VGG16 as a backbone. 

2.3 Accuracy metrics 

We evaluate the results with Precision, Recall, and 
Intersection over Union (IoU) of built-up structures (Van 
Beers et al., 2019). The calculation of the metrics could 
be found in Eq. (1) - (3) where TP, FP, and FN refer to the 
number of the True Positive, the False Positive, and the 
False Negative pixels for the semantic class.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
                                               (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
                                                      (2) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + FP + FN
                                                 (3) 

3 Results and Discussion 

We present the Precision, Recall, IoU values of all 
experiments in Table 1. The highest and lowest IoU values 
were highlighted with red and black bold text separately 
for each season. “Bria” refers to weights from models 
trained on data of the Bria camp.  

Table 1. The Precision, Recall, IoU values of all implemented experiments. 
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Firstly, we could observe ImageNet performs the best 
followed by RIW and then “Bria” in general. ImageNet 
models achieve the highest IoU values, and the most 
balanced Precision and Recall values for all three-band 
combinations. Whereas “Bria” models produce the lowest 
IoU values in all combinations except RGB bands. 
Additionally, they produce the highest Precision and the 
lowest Recall values in all combinations. These results 
demonstrate that “Bria” models missed the most TP pixels 
even though they extracted fewer FP pixels than other 
pretrained weights. However, the results of all experiments 
expose the imbalance issue in this extraction task. The 
issue is probably caused by the high imbalance of two 
semantic classes as mentioned before. It is a critical issue 
in deep learning domains (Johnson & Khoshgoftaar, 
2019). More techniques should be applied to solve the 
issue to achieve better performance. Besides, it is worth 
noting that RIW performs better than “Bria”, which 
indicates fine-tuning pretrained weights from other 
refugee camps can be harmful. The explanation is beyond 
the scope of this research but is worthy of attention for 
future research, especially in domain adaptation. 

Secondly, we can find three-band combinations 
outperform four-band combinations in general. It shows 
feeding four-band data directly to a semantic segmentation 
model is not recommended under the given conditions of 
this research. Besides, using the N band to replace the G or 
B band can improve by around 0.02 IoU values compared 
to conventional RGB bands for the wet season but cannot 
influence the performance for the dry season. N band is 
significant in identifying vegetation (Huang et al., 2021) 
and probably makes it more important for the wet season 
when the surrounding environment is covered by more 
vegetation. Therefore, RGN or RNB bands are highly 
recommended to replace RGB bands when extracting 
refugee dwellings in areas covered by a lot of vegetation. 
This finding is consistent with the outcomes of  (Dixit et 
al., 2021) which prove NRG bands outperform RGB and 
NRGB bands in terms of F1-score of the class building  
based on Sentinel-2 imagery. These findings indicate the 
enhancement of input images based on band combinations 
can influence on the performance of semantic 
segmentation models.  

Fig. 3 presents predicted labels of a subset of testing data 
for every band selection, every type of pretrained weights 
during the dry season and the wet season. Overall, we can 
observe that many FP and FN pixels occur around the 
boundary of built-up structures. This type of errors is hard 
to be avoided. It has been found that the label data 
annotated by different experts can have slightly differences 
in the boundary of target objects. Additionally, all models 
are incapable of detecting built-up structures occluded by 
trees (seen the example during the dry season in Fig. 3).   

 

 
Figure 3. Predicted labels of a subset of testing data for every 
band combination, every type of pretrained weights during the 
dry season and the wet season. Blue: False Negative pixels; Red: 
False Positive pixels. 

4 Conclusions 

This research compared the performance of four band 
combinations (RGBN, RGB, RGN, RNB) and three types 
of pretrained weights (RIW, “Bria”, “ImageNet”) in 
extracting refugee dwellings in the Kule refugee camp 
during the dry season and the wet season. The results 
illustrate that ImageNet outperforms RIW and “Bria” in 
terms of IoU and Recall values. On the contrary, “Bria” 
weights produce the lowest IoU and Recall values. 
Overall, three-band combinations achieve better results 
than four-band combinations. Using the N band to replace 
B or G band is recommended for extraction tasks during 
the wet season. This finding may be caused by the 
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significance of N band in identifying vegetation, which 
probably makes it more important for the wet season when 
the surrounding environment is covered by more 
vegetation. 

Data and Software Availability 

The VHSR satellite imagery and label data are not 
available restricted by licenses and sensitivity of refugees.  
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