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Abstract. Uniform plant spacing along crop rows is a
primary  concern  in  maximising  yield  in  precision
agriculture, and research has shown that variation in this
spacing  uniformity  has  a  detrimental  effect  on
productive  potential.  This  irregularity  needs  to  be
evaluated as early and efficiently as possible to facilitate
effective  decision-making.  Traditionally,  variation  in
seedling spacing is sampled manually on site, however
recent technological developments have made it possible
to  refine,  scale  and  automate  this  process.  Using
machine-learning  (ML)  object  detection  techniques,
plants can be detected in very high-resolution RGB (red-
green-blue)  imagery  acquired  by  an  unmanned  aerial
vehicle  (UAV),  and  after  processing  and  geometric
analysis of the results a measurement of the variability in
intra-row plant distances can be obtained. This proposed
technique  is  superior  to  traditional  methods  since  the
sampling can be made over more area in less time, and
the  results  are  more  representative  and  objective.  The
main  benefits  are  speed,  accuracy  and  cost  reduction.
This  work  aims  to  demonstrate  the  feasibility  of
automatically assessing sowing quality in any number of
images,  using  ML  object  detection  and  the  Shapely
Python library  for  geometrical  analysis.  The prototype
model can detect 99.35% of corn plants in test data from
the same field,  but  also  detects  1.89% false  positives.
Our geometric analysis algorithm has been shown to be
robust  in  finding  planting  rows  orientation  and  inter-
plant  lines  in  test  cases.  The result  is  a  coefficient  of
variation (CV) calculated per sample image, which can
be visualised geographically to support decision-making.
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1 Introduction

Over  millennia,  maize  production  has  contributed  to
human  community  development  (Brown  and  Darrah,
1985). Today it occupies the greatest share of the cereal
production market, and many countries benefit from of
this industry (Ritchie and Roser, 2020). Companies and
whole  countries  are  sustained  by  maize  and  its  uses,
including human and animal feeding (Rose et al, 2010)
and bio-fuel production (Ranum et al, 2014).

In corn agronomy, several pivotal stages in the growing
cycle exist  where decision-making significantly affects
the subsequent stage. Farmers take into account several
planting quality considerations (Liu et al, 2004; Doerge
et al, 2015), including sowing depth and inter- and intra-
row  spacing.  Since  the  sowing  process  significantly
influences the final plant stand emergence and therefore
the yield, the sowing quality must be evaluated as early
as  possible  for  yield  losses  to  be  anticipated  and  for
support  decisions that  could  mitigate  or  help optimize
resources while facing these negative effects, including
strategies as variable rate fertilization (Shi et al 2013) or
replanting (Terry et al, 2012).

Spatial distribution uniformity is measured by counting
the number of plants in a certain distance within the row
and the variability of their distances between each other.
This variability in plant spacing is characterised by the
Coefficient of Variation (Patel et al, 2001; Da Silveira et
al, 2005; Storck et al, 2015) and is equal to the standard
deviation divided by the mean, as in Eq. (1).

𝐶𝑉=
𝜎
𝜇

(1)

The  CV  is  commonly  measured  manually  in  small
portions  of  the  field  (Schmidt  et  al,  2001),  selecting
sampling  sites  arbitrarily. The  process  can  be
considerably time consuming, expensive, inaccurate and
tedious, especially on extensive agricultural  fields.  Out
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of necessity,  assessments and decisions are then based
on these inherently non-representative samples (Kurachi
et  al,  1989).  Due  to  this  uncertainty,  it  is  critical  to
minimise  measurement  errors  and  maximise
measurement frequency. 

Although several  factors  can  have  negative  effects  on
plant  development  and  yield  (Martin  et  al,  2005),  in
general  the literature  suggests that  irregular  spacing is
detrimental to crop performance (Easton, 1996; Hörbe et
al, 2016; Kolling et al, 2016; Lauer and Rankin, 2004;
Nielsen, 2004; Sangoi et al, 2012; Sgarbossa et al, 2018;
Silva et al, 2015) and some authors have provided yield
loss estimates as shown in Tab. 1.

Table  1.  Estimates  of  corn  yield  loss  due  to  plant-spacing
variability.

Study Yield loss per 10%
increase in CV

kg.ha-1
Easton, 1996 100 
Hörbe et al, 2016 1,220
Sangoi et al, 2012 64 - 83
Kolling et al, 2016 65 - 187
Silva et al, 2015 282

Since  the  advent  of  computer  vision  and  machine
learning agriculture has experienced exponential growth
in new technological applications (Lu and Young, 2020;
Chang  and  Lin,  2018).  Plant  detection  techniques  for
various vegetation types have been developed including
segmentation (Junior et al, 2021; Shirzadifar et al, 2020),
specifically  using  the  excess  green  index  (ExG)  and
Otsu’s thresholding method (Li et al, 2019;  Shrestha et
al,  2004),  deep  learning  with  convolutional  neural
networks (CNN) (Fan et al, 2018; Zamboni et al, 2021;
Li et al, 2016, Li et al, 2019), or a combination of these
methods (Valente et al, 2020; Neupane et al, 2019; Jin et
al, 2017). For corn fields, RGB data for early-stage plant
stand  validation  is  derived  from  manually  transported
sensors  (Carreira  et  al,  2022;  Easton,  1996),  ground-
based  vehicle-mounted  sensors  (Jiang  et  al,  2015;
Montalvo et al, 2012; Tang and Tian, 2008; Shrestha and
Steward,  2003),  and UAV-mounted sensors  (Kumar et
al, 2020).

In other  studies,  García-Martínez  et  al  (2020) counted
corn  plants  in  drone  imagery  over  tilled  fields  using
image  segmentation  and  cross-validation  templates,
resulting in high accuracy detection that decreased as the
crop  phenology  advanced,  while  Karami  et  al  (2020)

also  used  CNN  methods  of  segmentation  along  with
morphological operations that needed to be set for each
image analysed and reported trouble margining weeds.
Osco et al (2021) detected plants and rows using CNNs
with  high  accuracy  in  corn  and  citrus,  however,  the
model  was  trained  over  tilled  fields  and  had  issues
recognizing  plants  outside  the  rows.  Ma  et  al  (2021)
sampled a corn field on a very advanced phenology state,
with no major interference of weeds or background, they
used CNNs for testing and combining different features
including scale-awareness and channel interdependence
and using visual geometry group network, obtaining high
accuracy on the plant counting task.

The  objective  of  this  work  is  to  demonstrate  the
feasibility  of  a  combined  machine-learning  and
geometry-based  approach  for  planting  quality
assessment, and to provide a prototype implementation
trained on corn crops.

2 Methodology

The workflow comprises two main parts: an initial object
detection  based  on  machine  learning,  followed  by  a
geometric  analysis  of  the  identified  objects.  For  the
second part, a further division can be made between the
cornrow-orientation determination method and the inter-
plant spacing determination method.

2.1 Study Area and Data

Unmanned aerial vehicles (UAV) can provide very high-
resolution imagery over comparatively large areas in a
brief time. The images used in the study are from no-till
management  corn fields  in eastern  Paraguay and were
taken by an DJI M300 drone using a H20 sensor at  a
relative  altitude between  20 and 35 meters.  The RGB
pictures  obtained  have  a  spatial  resolution  of
approximately  0.9  mm  per  pixel.  With  each  image
covering an area of between 10 and 20m2 and with one
image per hectare,  sample imagery covers between 0.1
and 0.2% of the field. The images are JPEG-compressed
with width 5184 and height 3888 (20 megapixels), with
positional information recorded in XMP metadata.

2.2 Corn Plant Detection

Initially  an  image  segmentation  approach  was  taken,
similar to the method of Shirzadifar et al (2020). A mask
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layer is obtained and stem locations can be approximated
to  object  bounding-box  centroids.  This  approach  had
significant  difficulty  with  weeds,  as  well  as  in
differentiating  overlapping  plants.  Additionally,  due  to
the  sensitivity  of  the  CV  calculation,  it  was  a
requirement  that  the  plant  stem  locations  be  detected
more precisely.

Figure 1. First phase workflow showing one manual and one
semi-automatic training phase. 

To develop an effective plant-detection model, the CNN-
based single-stage object detector Yolov5 (Jocher et al,
2020) was used. For the training data set, fifty images
were sliced into 24 smaller images each, yielding 1,200
images  with  a  total  of  2,727  manually  labelled  class
instances. The region of interest (ROI) presented to the
model consists of a small bounding box drawn around
the  centre  of  the  corn  plant.  At  the  growth  stage  of
interest, the plants exhibit a very prominent whorl. This
small  ROI  allows  partially  obscured  plants  to  be
detected,  since  the  Yolov5  model  can  infer  obscured
objects from context. These images were used to train a
Yolov5l  model  for  100  epochs,  with  10%  randomly
selected for validation. Peak Mean Average Precision at
50%  confidence  (mAP@.5)  was  reached  at  the  23rd

epoch (0.941) and overfitting occurred thereafter.

This initial  model  was then used to  detect  plants  in  a
second batch of 1,200 sliced images, and the inference
results were manually corrected to produce another set of
training data with 3,557 class instances. Using the first
model’s  best  weights  and  this  set  of  training data  (all
other training parameters unchanged), after another 100
epochs  a  mAP@.5  of  0.984  was  achieved.  Active
learning can be implemented by continued training with
manually  validated  inference  results.  The  worflow  is
shown in Fig. 1.

2.3 Crop row orientation
An iterative approach was used to estimate the crop row
orientation.  The  locations  of  the  detected  plants  are
considered as a point cloud and lines of orientation 0°
through 170° are successively plotted through the centre
of the image in steps of 5°, clockwise from vertical. The
distribution  of  the  perpendicular  distances  from  each
point  to  this  line is  analysed to find the most  densely
clustered scenario,  which occurs  when the plotted line
fits the crop row orientation most closely. The process is
then  repeated  in  the  –5  to  +5  range  around  the
orientation of the line of best fit, in steps of 1°, to refine
the result to within 1° of the true orientation of the corn
rows.

Figure  2.  Second  phase  workflow  consisting  of  automated
geometric analysis.

For  analysing  the  distributions  of  the  perpendicular
distances in the abovementioned steps, they are plotted
in a histogram with 40 bins (Fig. 4). A discreteness index
(DI) is then calculated as the product of the number of
empty  bins  and  the  mean  value  of  non-empty  bins
Eq. (2). The orientation of the line with the highest data
discreteness index is taken as the orientation of the crop
rows (θ).

𝐷𝐼= (𝐸𝑚𝑝𝑡𝑦 𝑏𝑖𝑛𝑠 ) ⋅( 𝑃𝑙𝑎𝑛𝑡𝑠
𝑁𝑜𝑛−𝑒𝑚𝑝𝑡𝑦𝑏𝑖𝑛𝑠 ) (2)

When  finding  the  row orientation,  test  results  show a
single  prominent  peak  in  discreteness  when  the  target
angle is plotted (Fig. 3). Fig. 4 shows a comparison of
the  histograms  for  the  target  angle  and  an  arbitrary
incorrect angle. Here the clustering in distance values is
evident as the angle approaches the true angle.
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Figure 3. Discreteness index as it varies with slope.

Figure  4.  Histograms  for  orientation  30°  and  90°,  with
discreteness indices 145 and 52.

2.4 Plant spacing measurement

Due to irregular plant emergence, lines are obtained in
two phases. The first, strict phase finds whole crop rows,
with a vertex at the first and last plant per row. All point-
to-point  lines  are  plotted  and  filtered  by  a  threshold
deviation from plant row orientation θ (Fig. 2). For the
rows, this threshold is comparatively small as they are
expected  to  be  regular  over  any  moderately  extensive
distance. The resulting subset of lines is run through an
iterative  filter  where  the  shortest  of  any  pair  of
intersecting  lines  is  discarded.  Eventually  only  the
longest lines per row remain and a buffer is constructed
around them to be used in the next phase.

The  second,  more  lenient  phase  filters  the  lines  by  a
much higher deviation threshold, to account  for  plants
that are significantly offset from the centre of the corn
row  (up  to  20°  deviation  from  orientation  θ).  The
resulting  lines  are  then  filtered  by  whether  they  are
within  the  buffered  corn  rows  and  contain  only  two
plants  (start  and  end vertices)  within their  own buffer
(Fig. 2). The result is a collection of lines representing

the inter-plant distances along the crop rows for all the
rows that could be discerned from the input data.

The dimensionless target metric, the inter-plant spacing
Coefficient  of  Variation  (CV),  is  then  given  by  the
standard deviation of the distances divided by the mean.

2.5 Data and Software Availability

Scripts are available on GitHub at 
https://github.com/lucasuccio92/plantycs.

3 Results

Crop detection performance is expected to improve with
increased  learning,  but  the  second-generation  model
already  shows  98.4%  mean  average  precision  at  50%
confidence.  In  practice,  the  results  have  varied
depending  on the  growth  stage  of  the  corn.  Detection
results  from  10  test  images  show that  the  model  can
detect 99.35% of plants with 1.89% false positives in test
cases at the same growth stage (Tab. 2). 20 test images
from  a  slightly  younger  crop  showed  less  accurate
detection,  due  to  the  undeveloped  whorl  in  immature
plants. 

Table 2.  Method accuracy and errors in 30 test images at two
different growth stages.

Same crop Younger crop

Omission Error 0.65% 8.13%
Commission Error 1.89% 3.42%

Row Orientation 
Detection Accuracy 100% 95% 

Row Detection 
Accuracy 99.23% 96.72%

Inter-plant Space 
Detection Accuracy 95.70% 94.39%

Most false positives consist of large weed grasses similar
in appearance to emerging corn. Approximately 40% of
missed  detections  are  caused  by  the  leaves  of
neighbouring  plants  obscuring  the  centre  of  the  corn
crop.  An  exceedingly  small  percentage  of  error
(0.0026%) derives from the model identifying two corn
centres where only one exists (Fig. 5). This problem can
be mitigated by flagging instances where two plants are
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detected  in  very  close  proximity,  allowing  manual  or
automatic rule-based correction.

Figure  5.  Detection  results  showing  confidence  (zoomed in
image).  False  positives  can  be  screened  by  adjusting  the
threshold confidence.

The image-size parameter is an important consideration
when using the model for inference on high-resolution
imagery. In 41 test images, the number of plants detected
increased  with  every  increase  in  the  image-size
parameter,  as  it  specifies  the  width  to  which  input
images are resized before being presented to the model
for inference. With increasing resolution presented to the
model, smaller objects become identifiable. Predictably
there  is  a  computational  cost  incurred  with  every
increment in this parameter (Tab. 3).

Table 3. Detection results using different image-size parameter
values.

Image-
size

Plants
detected

Pre-process
time

Inference time

ms ms
640 791 1.8 508.8
864 1,796 1.4 1,019.6
960 2,050 1.7 1,147.8
1280 2,426 6.6 2,220.4
1920 2,636 8.3 3,438.6
3840 2,715 32.1 14,298.2

The  detection  model  has  been  tested  for  robustness
against noise. Motion blur is a common concern in aerial
photography  and  the  severity  of  distortion  directly
affects model performance. The following images (Fig.
6)  show degrading  detectability  with  increasing  linear
motion blur. 

Figure 6. Detection failure due to motion blur (0-, 10-, 20- and
30-pixel linear motion blur).

Fig. 7 shows the final  per-sample result.  On the input
image, the corn plants have been marked, the crop rows
inferred and plotted and the intra-row plant spacing is
shown.  The CV calculated  in  this  instance  is  23.05%.
Results for multiple images are returned as a geometry
collection and can be visualised as in Fig. 8.

Figure 7.  Processed sample showing rows, inter-plant spaces
and CV
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.

Figure 8. Map of sampling results from a single field.

A final evaluation was conducted to test the reliability of
the  proposed  method.  The  CVs  in  10  automatically
detected  and  analysed  samples  were  compared  to  the
CVs after  manually correcting  the  same samples.  The
result was a   Mean Absolute Error of 4.86.

4 Discussion

Our  results  compare  favourably  with  Shirzadifar  et  al
(2020) who achieved 91% accuracy using segmentation
and  k-means  clustering  in  a  tilled  field.  Since  our
methodology  requires  no  pre-processing  or
segmentation,  the  process  is  more  direct  in  principle.
Masks were not used to marginalize the plants from the
rest, as can be seen in other literature reviewed, where
the implementation of  ExG, Otsu’s,  k-means and two-
dimensional  matrix  (Shirzadifar  et  al.  2020),  Hough
transformation, U-Net binarizations (Kitano et al. 2019,
Vong  et  al  2021)  and  combination  of  these  (García-
Santillán et al. 2018, Montalvo et al. 2012, Zhang et al.
2018)  are  critical  for  obtaining  accurate  results  in
counting,  row  detection  and  within-row  distribution
uniformity measurements in no-till conditions. Although
these proved to be valid, some methods rely heavily on
no-interference conditions in tilled fields or even relied
on  simulated  corn  fields.  Weeds  and  residues  are
commonly present in no-till extensive agricultural fields
and  can  pose  a  major  challenge  to  AI-based  plant
detection techniques.

Results presented by Velumani et al. (2021) showed high
accuracy in plant detection in early stages using Faster
R-CNN, without segmentations or masks in very high-
resolution  images  and  using  bounding  boxes  that
covered whole plants, however these experiments were
carried  over  tilled  fields.  Our  detection  method  has

proven  robust  against  closely  spaced  and  overlapping
plants  and,  most  remarkably,  against  no-till  field
conditions  containing  residues  and  weeds.  Due  to  the
small  ROI,  the  model  can  precisely  detect  partially
visible plants. This is an improvement over blob-based
segmentation  methods  like  Vong  et  al  (2021)  and
Shirzadifar  et  al  (2020)  where  overlapping  plants  and
weeds present difficulties.

For making a proper ROI selection it was important that
the images were taken between v3 and v5 stage of corn
phenology and 25 days after sowing (DAS), since most
plants  are  expected  to  emerge  by  that  time,  reducing
false  negatives  and  having a broader  variety of  plants
that did not escape the detection algorithm due to their
size  heterogeneity.  Similar  stages  were  considered  by
Shirzadifar et al (2020) and Zhang et al (2018). Further
stages such as the ones presented by Kitano et al (2019)
were  also valid  but  can  reduce  the  action margin and
proved to decrease the accuracy of the model due to the
plants’  development,  a  small  number  of  plants  are
undetected due to partial or complete obscurement by a
neighbouring plant.  Vong et  al  (2021) performed their
study 15 DAS when,  in regular  field conditions,  there
might  still  be  plants  that  would  not  have  completely
emerged to be detectable.

The row-orientation  algorithm is  susceptible  to  highly
regularly  spaced  (lattice-like)  planting  and  can  fail  in
cases where plants are nearly symmetrical in more than
one  direction.  This  problem  can  be  partly  offset  by
parameter  adjustment.  Another  issue  arises  where
different rows meet in a single image, due to turning or
re-entry  manoeuvres  by  the  sowing machine.  Samples
without a dominant row orientation can be ignored by
specifying  a  minimum  deviation  from  the  mean  or
calculating a confidence index. A further consideration is
the  orientation  threshold  for  inter-plant  distance  lines,
which can deviate extremely from the orientation of the
row.  To  ensure  that  such  lines  are  not  filtered,  the
tolerance parameter can be adjusted accordingly.

A clearer visualization of planting quality assessments in
addition  to  its  spatial  referencing  availability,  can
provide  a  substantial  possibility  to  improve  and  scale
practices,  potentially benefitting many parties  involved
in maize production. 

AGILE: GIScience Series, 3, 28, 2022 | https://doi.org/10.5194/agile-giss-3-28-2022 6 of 9



5 Conclusions
Our  method  addresses  difficulties  that  the  high
granularity  of  the  imagery  might  pose  for  traditional
segmentation-based plant detection in no-till fields, such
as  the  presence  of  residues  and  weeds  which  may
interfere with or confuse the detection model. An object-
detection  approach  appears  to  be  more  suitable  for
uncontrolled field conditions.

This process can be extended to other crops, requiring
only that the detection model be trained on the relevant
data.  Using  relative  altitude  and  sensor  specifications
embedded in image metadata, it is possible to calculate
the  ground sampling  distance  (GSD) and  derive  other
relevant metrics from the samples, such as plant density
or  actual  plant  spacing.  Similarly,  the  process  can  be
extended  to  wider  area  images  to  achieve  greater
sampling coverage.

Apart from instances where the model fails to adequately
detect plants prior to the distance uniformity evaluation,
our  method  still  manages  to  deliver  more  robust
information compared to the traditional  approach. It is
also superior in terms of reliability and area surveyed in
relation  to  labour  time.  The  validity  of  the  final  CV
calculation  depends  on  the  accuracy  of  the  detection.
Thus,  reliability  can  be  improved  by  continuous
detection model training.

Very  high-resolution  UAV  imagery  and  artificial
intelligence  techniques  can  improve  upon  traditional
methods by measuring the same metrics over more area
in less time. The result obtained with our method is also
transparent and robust, resulting in clear and non-biased
data to support management decisions. 
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