
Abstract. Studies from public and environmental health
show strong indication of the importance of visible urban
green space. However, current approaches for modelling
viewshed based greenness visibility still have high com-
putation costs. As a consequence, comparative studies of
city-wide visible greenness, everyday mobility, and indi-
vidual attention are still at the edge of feasibility. Known
optimisations focus on reducing the computation time of
single viewsheds. As point-based viewsheds are computed
using geospatial data, current approaches seek to acceler-
ate calculation using intelligent data structures or spatial
indexes (at the cost of additional memory) or develop ap-
proximative heuristic solutions. In contrast, as we aim to
process large numbers of viewsheds with fixed parame-
terisations, we use a prototyping approach preprocessing
a single viewshed template to store common prefixes of
consecutive lines of sight that can be applied to follow-
up viewsheds by a simple offset operation. Our evaluation
shows an average improvement of 34% over the bench-
mark algorithm (RFVS), with even stronger improvements
for large viewsheds. We anticipate that these findings lay
the groundwork for further optimisation of point-based
viewshed computation, improving the feasibility of sub-
sequent comparative studies in the field of public and en-
vironmental health.

Keywords. viewshed computation, greenness visibility,
urban health, optimisation

1 Introduction: Motivation

Recent research in the field of environmental health re-
ports small but stable positive effects of visual greenness
in one’s everyday environment on overall self-reported
health (Markevych et al., 2017). These range from mea-

surable environmental stressors like air or noise pollution
(Lindley et al., 2019) and the encouraging function of a
green environment on physical activity and place-bound
social cohesion (Markevych et al., 2017) to resilience-
building effects like stress recovery and attention restora-
tion (Ulrich, 1983; Kaplan and Kaplan, 1989). Walker
et al. (2022) show that adding informed greenness to other
indicators such as household and local socioeconomic
conditions increases their predictive accuracy notably.

However, informed spatial models of greenspace use pa-
rameterisations based on either rough heuristics that are
difficult to validate or depend on computationally expen-
sive models (Dadvand and Nieuwenhuijsen, 2019; Labib
et al., 2021). Our approach focusses on optimising geospa-
tial methodology to assess the effects of visual greenness
on health by introducing a computational approach that
significantly decreases computation time of large-scale
point-based viewshed analyses.

2 Related Work

Our approach is based on greenspace exposure modelling
frameworks developed by Dadvand and Nieuwenhuijsen
(2019) and Labib et al. (2021). To account for physical
mitigation effects, the mere availability of greenness is es-
timated by simple map-bound 2D buffer analysis (Lindley
et al., 2019). Having access to greenspaces as precondi-
tion for active capacity-building requires two components
to be modelled: (1) Proximity to greenspaces that can be
reached in a reasonable time and (2) structural or legal ac-
cess that could exclude people from participating from the
positive effects of greenspace (Markevych et al., 2017).
Whereas proximity can be easily computed by travel-cost-
models, structural or legal access as non-disclosed or non-
spatial information is hard to obtain, especially for larger
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areas. Existing combined models of greenness are suffi-
cient to compute exposure time models of everyday ac-
tivity spaces (Łaszkiewicz and Sikorska, 2020). Neverthe-
less, involving visibility not only avoids the implicit limi-
tations of accessibility models, but also addresses individ-
ual effects in stress recovery and attention restoration (Ul-
rich, 1983; Kaplan and Kaplan, 1989), presumably better
approximating or representing the actual mechanisms in-
volved. As visibility models represent individual percep-
tions of greenness, they measure immediate and not only
long-term effects on individual health at the cost of their
demand for more complex solutions.

The exposure to visible greenness can be estimated using
street view (SV) images (e.g., Google Street View, Baidu
Street View). While this methodology is most commonly
used in the literature it has several limitations, such as
seasonal inconsistency between SV images and that view-
ing points are typically limited to roads accessible by car
(Li et al., 2015). Furthermore, it is still difficult to accu-
rately classify vegetation from SV images due to many
factors, such as shadows and confusion between human-
made green features and vegetation (Li et al., 2015).

An alternative method for assessing greenness visibil-
ity from eye-level perspective uses GIS-based viewshed
analysis. Recent studies have demonstrated the use of
city-wide scale viewshed-based greenness visibility as a
highly accurate alternative to SV-based visual exposure
(Tabrizian et al., 2020; Labib et al., 2021; Cimburova and
Blumentrath, 2022). Such methodologies are not depen-
dent on the availability of SV-images and can be scaled to
large areas with little effort. However, high computation
time remains the major limitation of this methodology, be-
cause a single, point-based viewshed for each observer lo-
cation is required. Recent studies reported total computa-
tion time for the Greater Manchester region and Oslo as
11.5 and 5.6 days, respectively (Labib et al., 2021; Cim-
burova and Blumentrath, 2022).

Optimising viewshed algorithms has been subject to prior
research. While the well-known R3 algorithm achieves
high accuracy, it has low efficiency and is therefore only
practical for small datasets (Franklin and Ray, 1994). The
sweep-line algorithm (Van Kreveld, 1996) has accuracy
equivalent to the R3 algorithm with reduced computation
time. In essence, a sweep line rotates around the observer’s
position. All cells intersected by the current sweep-line are
active. Visibility is only computed for those cells whose
centerpoints were passed by the sweep-line on the last
rotation step by comparing their slope to all active cells
closer to the observer. Ferreira et al. (2013) reduced com-
putation time by implementing a parallel sweep-line algo-
rithm utilising multiple CPU cores which does not mod-
ify the algorithm per se. While the aforementioned meth-
ods calculate visibility from an observer to the centre of
a cell, the RFVS algorithm uses a relaxation of the prob-
lem such that a target may be considered visible if any part
of the cell is visible (Franklin and Ray, 1994). As this al-
gorithm is only an approximation with reduced accuracy,

it is very computationally efficient. Ferreira et al. (2016)
further reduced computation time by optimising the sort
order of the cells relying on spatial indexes. Also in this
case, technical improvements through parallel processing
have been achieved using GPUs (Zhao et al., 2013; Hao-
Nguyen et al., 2018). However, as with parallel computing
of the original sweep-line algorithm, this does not reduce
the complexity of the problem. Cimburova and Blumen-
trath (2022) report that simply reducing the sampling rate
by a factor of four does not lead to a significant drop of
accuracy in the resulting greenness visibility.

In this study we aim to present a fast and novel algo-
rithm suitable for large sets of single point-based view-
sheds by implementing a viewshed prototyping approach
that makes use of shared processing steps between all in-
dividual viewsheds. In addition, we allow for basic CPU
multi-threading by computing viewsheds from multiple
vantage points simultaneously. We build on the work of
Labib et al. (2021) by presenting the easy to use R pack-
age GVI (Brinkmann and Labib, 2021) that enables fast
computation of greenness visibility for large-scale areas.
Whereas previous approaches mainly aimed at reducing
computation time of a single viewshed, our goal is to re-
duce the aggregated computation time for a large num-
ber of viewsheds and thereby enable a scaling-up of spa-
tial coverage and resolution for greenspace visibility mod-
elling.

3 Method

3.1 Viewshed and Greenness Visibility

The Viewshed Greenness Visibility Index (VGVI) (Labib
et al., 2021) expresses the ratio of visible greenness to the
total visible area. This is derived from geospatial datasets
of elevation and binary greenspace (e.g., green, no-green).
Elevation and greenspace data are typically represented
by high resolution elevation models and Land Use and
Land Cover (LULC) maps, respectively. Our operational-
isation of green space depends on the classification of
the LULC raster. Using LULC data with a 2 m resolu-
tion, our approach is not sensitive enough to capture ob-
jects below that threshold. As visual qualities are repre-
sented by LULC data values, other visibility metrics such
as bluespace-, or tree-visibility can be calculated in the
same manner. To calculate eye-level visibility for an ob-
server we used a viewshed based on the RFVS algorithm
as it has high computational efficiency whilst still main-
taining sufficient accuracy. The height of the observer is
derived using ground-level elevation from a Digital Ter-
rain Model (DTM) and the observer height offset (e.g., 1.7
m). Height within the viewshed is evaluated using a Digi-
tal Surface Model (DSM) to account for obstacles such as
trees. The VGVI algorithm is described in detail in Labib
et al. (2021).
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Figure 1. Representation of a single line of sight. Dichotomous visibility (e.g. visible, not visible) and intersected greenness values
(e.g. green, no-green) are evaluated along the line of sight.

In brief, we use a raster map representation of the study
area. We applied the Midpoint Circle Algorithm (van
Aken, 1984; Cao et al., 2020) to calculate an arc of 1/8 of
the perimeter of a circle with a fixed radius r (e.g., 800 m)
from the observer location catching all intersecting pixel
cells. We then applied Bresenham’s line algorithm (Bre-
senham, 1965, 1977) to cast a line of sight (LOS) to each
perimeter cell. The 8-way symmetry property of a circle
was used in order to project the LOSs eight times to iden-
tify LOS for all cells within the circle. A single LOS can
be described as a sequence of cells (c0, c1, ..., ci, ..., ck)
where k ≤ r, and c0 is the observer location and ck a cell
at the circle’s perimeter. As visualised in Fig. 1, dichoto-
mous visibility (e.g., visible/not visible) for each cell on a
LOS is evaluated with simple geometry by calculating the
slope αi from the observer cell c0 to each LOS cell ci. Let
µ be the highest slope so far, then ci is visible if and only
if αi > µ. Finally, the VGVI was calculated as the pro-
portion of visible green cells to the total visible area. All
values are summarised using a user-selected distance de-
cay function (e.g., exponential or logarithmic) to account
for the reduced visual prominence of an object in space
with increasing distance from the observer. The estimated
VGVI values range between 0 and 1, where 0 = no green
cells are visible, and 1 = all of the visible cells are green.

3.2 Viewshed Prototyping

VGVI is often calculated for a large number of observer
locations. Computation time per point can be reduced by
creating a viewshed prototype prior to viewshed computa-
tion that pre-calculates shared processing steps between all
individual viewsheds. On average, the calculation of LOS
paths accounts for 25% of total computation time. How-
ever, as the coordinates of all LOS cells are relative to the
observer location in the centre and the viewing distance is

assumed constant for all observers, this step can be gener-
alised for all viewsheds.

An observer with synthetic coordinates is generated and
the circle’s perimeter cells and LOS paths are calculated.
When applied to an actual observer location, the LOS cells
only need to be reprojected to true pixel coordinates and
visibility can be calculated as described in section 3.1.

Figure 2. Reuse of shared path segments of consecutive lines of
sight (LOSs) visualised in the first quadrant of a viewshed. Red:
Observer cell in the centre. Green: Last cell of the first LOS. Dark
blue: Last cell of the consecutive LOS. Light blue: Shared prefix
between both LOSs.

We further reduced computation time by applying a pre-
fix cache algorithm on subsequent LOS paths. As shown
in Fig. 2, neighbouring LOS paths may be overlap-
ping. In a viewshed with radius r, let Ln be the n-
th LOS in a clockwise order with a sequence of cells
(c0n, c

1
n, ..., c

i
n, ..., c

k
n) where k ≤ r. Let Ln+1 be its consec-

utive LOS with (c0n+1, c
1
n+1, ..., c

i
n+1, ..., c

k
n+1) there exists
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Figure 3. Computation time [ms] per viewshed parameterized by viewing distance [m] from the observer location. Blue: the benchmark
RFVS algorithm. Orange: RFVS algorithm with prototyping.

a certain threshold j with 0≤ j < r where cin = cin+1 for
all 0≤ i < j. When calculating visibility for Ln we tem-
porarily store the maximum slope µ at each cell cin in the
array υ at the position υi. When calculating visibility for
Ln+1 we begin at cj+1

n+1 and use µ= υj from the previous
LOS as the maximum slope so far. As demonstrated in the
example (Fig. 2), when calculating visibility for Ln+1 we
begin at c4n+1 and use µ= υ3, consequently taking only
one instead of four processing steps. As part of the pre-
computed prototype we store the specific threshold j for
each LOS referencing the longest prefix for the preceding
LOS.

4 Results

We implemented our algorithm in C++ with g++ 4.6.2 us-
ing OpenMP (Dagum and Menon, 1998) for parallel pro-
cessing on the CPU. Our experimental platform was an
AMD Ryzen 9 3900X 12-core with 64 GB RAM run-
ning Windows 10. We have built an easy to use R pack-
age (R Core Team, 2021) around the C++ code. Repro-
ducible workflows have been provided on GitHub and our
data freely available (10.5281/zenodo.6421424).

We measured computation time (a) for the raw viewshed
calculation excluding the greenness visibility step to pro-
mote comparison with other viewshed algorithms, and (b)
for the complete VGVI algorithm simulating a large-scale
study. For testing the algorithms we used LiDAR derived
DSM and DTM (Natural Resources Canada, 2019) with
1 m spatial resolution of the Vancouver metropolitan area
(area: 528 km2). Publicly available LULC data has been
acquired by Metro Vancouver (31.11.2019) at 2 m reso-
lution and reclassified to a binary greenness raster (0=no-
green; 1=green).

4.1 Viewshed

To evaluate our algorithm performance, we measured
computation time for (a) the original algorithm without
prototyping, (b) our novel algorithm utilising only one,
and (c) utilising 10 CPU threads in parallel. We generated
1000 random observer locations across the complete study
area. Viewsheds for all points have been calculated at mul-
tiple distance levels from 1 m to 1000 m. We measured
total runtime at each distance level and scaled it to compu-
tation time per viewshed (total runtime / 1000). The times
represent the average of 10 runs and are given in millisec-
onds, the results are visualised in Fig. 3. Overall, mean
single-core computation time per viewshed was improved
by 34.2% (± 20.9%) using our novel algorithm. Indiffer-
ent (but not lower) results were measured for small view-
sheds (r < 300 m), using a larger radius (r > 300 m) led
to an improvement of 40.5% (± 15.7%). Compared to our
single-core algorithm, we achieved speeds up to 9 times
faster when using 10 concurrent threads.

4.2 Greenness visibility

To demonstrate runtime for a large-scale greenness visi-
bility study we estimated city-wide VGVI at 5 m inter-
vals, resulting in 17,329,345 observer locations. As sug-
gested by Labib et al. (2021), we assumed an eye-level
observer height of 1.7 m and used an exponential distance
decay weighting function with a viewing distance thresh-
old of 800 m. The result of the city-wide VGVI calcula-
tion is mapped in Fig. 4. For a rough evaluation of our ap-
proach with other aforementioned studies, we do not com-
pare complexity, rather computation time. Total runtime
time using 20 CPU threads was 20.3 hours, equivalent to
computation time per observer of 84 milliseconds.

To compare our algorithm with other results by Labib et al.
(2021) and Cimburova and Blumentrath (2022) respec-
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Figure 4. Example Viewshed Greenness Visibility Index (VGVI) map of Vancouver, Canada. An interactive version of the complete
study area is available online from https://bit.ly/3r6IyNR.

tively, we also computed VGVI with 5 m resolution of
elevation models and 800 m viewing distance, and 1 m res-
olution of elevation models and 100 m viewing distance.
Both studies used parallel CPU computation to estimate
city-wide VGVI. Computation time per point using our
novel algorithm was 5 and 2 milliseconds, compared to
reported 0.8 seconds (Labib et al., 2021) and 80 millisec-
onds (Cimburova and Blumentrath, 2022), respectively.

5 Discussion

Our results indicate that, in addition to the advances al-
ready made in optimisation of the algorithmic processing
of single viewsheds, there remains a significant potential
to enhance city-scale viewshed-analysis through improve-
ment of the computational algorithms. By using prototyp-
ing of the viewshed computation process, we outperform
the original RFVS algorithm in any parameterization for
1000 random observer locations on a city map, starting to
produce significant gains from a 250 m viewing distance.
By that simple technique, we also outperform the param-
eterization of recent optimisations regarding computation
time of VGVI. In addition, by reusing preprocessing steps
for all viewsheds, our approach will take further advan-
tage from the combination with Ferreira et al. (2016) and
Cimburova and Blumentrath (2022).

The quality of the results highly depends on the input data
used. LULC data is not available in equal quality for all
regions. For our model we used a DSM with 1 m resolu-

tion. Future research will analyse the effect of aggregation
(larger cells of the DSM) on accuracy of greenness visi-
bility. In our study, we used a simple distance decay func-
tion to account for the decreasing salience of an object in
space with increasing distance from the observer. Further-
more, as a general limitation of viewshed computations,
the 2.5D character of DSM data does not allow for mul-
tiple height values. Only the largest height value is stored
for each pixel. Therefore, looking underneath objects like
trees or power cables is not represented correctly. How-
ever, further detailed evaluation comparing real-world ex-
periences with our model is needed.

These optimisations are a precondition for the efficient use
of viewshed based computations on large numbers of ob-
server locations in the field of environmental health. A
model of city-wide visibility of urban green spaces allows
for an efficient computation of location based services util-
ising them, e.g. measuring the impact of everyday mobil-
ity on public health. Further work will take advantage of it
to evaluate effect sizes of greenness visibility on attention
data (e.g., in virtual environments: Tabrizian et al., 2020),
the relative impact of close and distant-range vision, and
different categories of vegetation (Schreyer et al., 2022).
To facilitate using our novel algorithm in the context of ur-
ban health geography we provide the easy-to-use R pack-
age GVI (Brinkmann and Labib, 2021).
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6 Conclusion

Studies from public and environmental health show strong
indication of the importance of visible urban green space.
However, computation time of current models of city-wide
viewshed based greenness visibility are still not sufficient
to leverage large-scale comparisons of visible greenness,
everyday mobility and individual attention in the field. In
addition to existing concepts to optimise computation time
of single viewsheds, we propose a prototyping approach
sharing as many computation steps as possible between
viewshed computations for a large number of observer lo-
cations. Our evaluation shows an improvement over the
benchmark algorithm (RFVS), especially for large view-
sheds. We anticipate that by combining these results with
known optimisation steps for point-based viewshed com-
putation (e.g., intelligent pre-sorting, spatial indices, and
heuristic sampling), we will improve the feasibility of sub-
sequent comparative studies in the field of public and en-
vironmental health.
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