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Abstract. 

Biomass is an important indicator in the ecological and 

management process that can now be estimated at higher 

temporal and spatial resolutions because of unmanned 

aircraft systems (UAS). LiDAR sensor technology has 

advanced enabling more compact sizes that can be 

integrated with UAS platforms. Its signals are capable of 

penetrating through vegetation canopies enabling the 

capture of more information along the plant structure. 

Separate studies have used LiDAR for crop height, rate of 

canopy penetrations as related to leaf area index (LAI), 

and signal intensity as an indicator of plant chlorophyll 

status or green area index (GAI). These LiDAR products 

are combined within a machine learning method such as 

an artificial neural network (ANN) to assess the potential 

in making accurate biomass estimations for winter wheat. 
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1 Introduction 

Aboveground biomass (AGB) is important within 

precision farming for monitoring the growth status of 

crops, making yield predictions, and enabling the 

appropriate responses (Lu et al., 2019). The more often 

and the greater the detail that this metric of information is 

collected, the timelier and more precise the farming 

strategies can be.  

Unmanned aircraft systems (UAS) offer on demand 

collection with little logistical complexity. Being able to 

fly close to the ground and being unaffected by cloud 

cover, UASs provide some of the greatest temporal and 

spatial resolutions available. Technology has recently 

allowed for LiDAR sensor sizes to become compact 

enough to be mounted on UAS platforms (Harkel et al., 

2020). Its signal can pass through gaps in the canopy 

cover allowing points to reach the ground. This 

characteristic allows for accurate canopy height 

measurements (Harkel et al., 2020) and can also provide 

canopy density metrics in respect to the rate of signal 

penetration (Bates et al., 2021). The intensity of the 

LiDAR signal which is often within the near infrared 

(NIR) bandwidth can also be an indicator for green area 

index (GAI) (Liu et al., 2017). In this study we evaluate 

the combination of LiDAR height, intensity, and 

multilayer density products within an ANN model when 

monitoring winter wheat over the growing season. 

2 Methods 

2.1 Study Area 

The study was conducted at the PhenoRob Central 

Experiment at Campus Klien Altendorf (CKA), Germany. 

The area of interest consists of 72 winter wheat plots (see 

example: Fig. 1). Destructive samples were taken every 

two weeks from the 19th of April until the 5th of July 

2021. Destructive samples as ground references were 

taken from 10 separate plots after each flight campaign.  
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Figure 1. Overhead view of the winter wheat plots at CKA. Cut 

areas from the destructive measurements can be seen in the 

southern part of the field.  

2.2 Equipment 

A YellowScan Surveyor LiDAR was used onboard a DJI 

Matrice 600 pro hexacopter. A Septentrio NR3 GNSS was 

used as a base station to provide the needed data for post 

processing kinematics (PPK) georeferencing of the 

scanned scene.  

 
Figure 2. The DJI Matrice 600 with the YellowScan Surveyor 

LiDAR mounted below it.  

2.3 Data Processing 

3D point clouds were produced using YellowScan’s 

Cloud Station Software. Ground points were segmented 

from the vegetation points using the cloth simulation filter 

(CHM) method. The data was then converted into 15 cm 

raster formats while extracting the respective information 

needed for each model input. 

Canopy height models (CHM) were derived using a dif-

ference of digital elevation models (DEM) method (See 

Eq. 1). The digital terrain model (DTM) is the rasterized 

ground point elevations and the digital surface model 

(DSM) is the rasterized elevations of points on top of the 

canopy.  

𝐶𝐻𝑀 =  𝐷𝑆𝑀 − 𝐷𝑇𝑀                                                (1) 

Gap fraction uses the count of points (𝑛𝐷𝐿) within the 

respective density layer (DL) in a ratio to the count of all 

points (n) defined within the extent of the rasterized grid 

cell (See Eq. 2). This gauges the signal’s rate of 

penetration through the canopy in relation to the 

vegetation density.  

𝐺𝐹 =  
𝑛𝐷𝐿

𝑛
                                                              (2)  

This study extracts the points into 5 GF layers of 20 cm 

vertically long segments. This is to further capitalize on 

LiDAR point density information throughout the vertical 

extent of the vegetation.  

 

Figure 3. The LiDAR points were segmented into 20 cm layers 

where GF was used for each layer. GF 5 representing the lowest 

layer in the canopy and GF 1 representing the highest layer 

possible. 

In this study, the LiDAR signal wavelength is in the NIR 

range with a frequency centered on 903 nm and having 

potential to indicate variation in vegetation vigour. 

LiDAR penetration index (LPI) is derived using the mean 

intensity values of ground points ( 𝐼𝑛𝑡𝑔𝑟𝑜𝑢𝑛𝑑 ) in 

comparison to the mean intensity of all points within that 

particular raster cell extent (See Eq. 3) (You et al., 2017).  

𝐿𝑃𝐼𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝐼𝑛𝑡𝑔𝑟𝑜𝑢𝑛𝑑

𝐼𝑛𝑡
                                             (3) 

The variables are plotted for correlation to dry mass 

(DM) of the crop as can be seen in Figure 4. Height has 

the highest correlation. Intensity is negatively correlated 

with DM considering that this can be due to senescence 

later in the growing season. The GF layers between the 

top and bottom layer hold the highest correlation to 

resulting biomass.  
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Figure 4. Correlation of model inputs to sampled dry mass (DM) 

2.4 ANN Model 

ANNs combine the input with interconnected neurons to 

best match the output values over a training database. Out 

of the 10 winter wheat destructive plots data, 7 were used 

for training the model. The network architecture was 

defined by trying a combination of hidden layers and 

nodes that provided the best results. In our case, this was 

one hidden layer consisting of 4 nodes. (Liu et al., 2017). 

The model training and implementation with raster data 

was done in RStudio with the neuralnet package.  

 

Figure 5. Graphical representation of the model with the 

weights on each connection. The black lines show the 

connections between each layer and the weights on each 

connection while the blue lines show the bias term added in each 

step. The bias can be thought as the intercept of a linear model. 

3 Results 

An example visualization of the resulting biomass 

estimations from the trained model can be seen in figure 

6.  

 

Figure 6. Example of visualized dry mass (DM) biomass map 

produced using the trained ANN model from raster inputs using 

RStudio with the neuralnet package.  

Root mean square error (RMSE) and R2 were selected as 

the statistical metrics used to evaluate the performance. 

The results achieved a RMSE of 1.94 t/ha and an R2 of 

0.87 throughout the entire growing season (see example: 

Fig. 7). 

 

Figure 7. Results of LiDAR UAS dry mass (DM) biomass 

estimations as compared to the ground measurements in tons per 

hectare (t/ha) using the 3 winter wheat plots allocated for 

accuracy testing for each date. 

4 Conclusion 

This study provides an example of the versatility of 

LiDAR data when deriving various vegetation parameters 

that can be used in combination to provide accurate 

biomass estimations. Furthermore, it provides evidence 

that machine learning methods such as ANN can utilize 

and bring forth the benefits from the combination of these 

metrics that are particular to LiDAR.   
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