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Abstract. This article presents a method for traffic con-
trol recognition at junctions (traffic lights, stop, prior-
ity and right of way rule) using crowd-sensed GPS data
(vehicle trajectories), as well as features extracted from
OpenStreetMap. Traffic regulators are not mapped in most
maps, although the way they regulate traffic at intersec-
tions affects the traffic flow and therefore the vehicle idle
time at intersections, the fuel consumption, the CO2 emis-
sions, and the arrival time at a destination. Because of the
controlled interaction that road users have with each other
at intersections, driving safety or assistance applications
can be enabled if intersection regulators are mapped. In
order to verify the proposed method two sets of trajecto-
ries were used, one of which is an open dataset, from two
different cities, Hannover and Chicago. Two classification
methods were tested, random forest and gradient boost-
ing, using exclusively either dynamic features (trajecto-
ries), or static (only data from OSM) or a combination of
the dynamic and static features (hybrid model). The results
show that the gradient boosting classification with hybrid
features can predict traffic regulations with high accuracy
(93% in Chicago and 94% in Hannover), outperforming
the other detection models (static and dynamic). At the end
directions for further research on this topic are proposed.

Keywords. traffic regulator detection, traffic signs, GPS
trajectories, crowd-sensing, road-maps, classification

1 Introduction

In recent years, the analysis of motion sequences (GPS tra-
jectories) has become increasingly important for compa-
nies and individuals. Especially with the advent of smart-
phones as low-cost sensors, recording sensor data such as
GPS trajectories has become trivial. Thus, a large amount
of GPS trajectories are generated around the globe on a
daily basis. These trajectories can be analyzed for various
purposes. One of them is for the automatic map updating
or map enhancement. In this process, additional map in-

formation is generated from the collected GPS trajectories
with the goal of either adding contextual information that
is not yet available, or updating existing but outdated in-
formation. Such kind of information can be, e.g., the au-
tomatic detection of road network changes (Shan et al.,
2015; Tang et al., 2019; Gao et al., 2021), the estimation
of traffic flow (Li et al., 2021; Tu et al., 2021), the traf-
fic signal waiting time (Lian et al., 2021; Yoshioka et al.,
2022) and the determination of road roughness (Wage and
Sester, 2021; Hiremath et al., 2021).

Another example of such contextual information is traf-
fic control systems, which are used to control the traffic
of road users such as vehicles, bicycles and pedestrians
at intersections. Traffic regulators at intersections contain
important navigational information and could, for exam-
ple, help in deriving more accurate travel time estimates.
Traffic regulators, such as traffic signals, have a significant
impact on traffic flow at intersections, which in turn con-
tribute to increased fuel consumption because they involve
queuing conditions and many stop-and-go events. Accord-
ing to Alshayeb et al. (2021), intersections are one of the
main spots where excessive fuel is consumed. In addition,
traffic signals contribute more to air pollution compared to
other types of controls due to excessive vehicle emissions
at these locations (Gastaldi et al., 2014). Furthermore, the
type of regulators is also critical for the development of
autonomous vehicles and decision making regarding their
behaviour as road users. Therefore, it is important that this
information related to traffic regulators is present on maps
and is up-to-date.

When examining public map databases, such as Open-
StreetMap (OSM), it is observed that many intersections
are missing information on traffic regulations. The Fig-
ure 1 shows the OSM from a very central and busy area of
a large sized city in northern Germany, where traffic reg-
ulations are only available for five of the fifty illustrated
intersections. This is remarkable, as in the city there is
a very active OSM community, leading to very detailed
OSM maps in general. The task of automatically detect-
ing and identifying (the type of) traffic regulators can be
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Figure 1. In red are depicted the intersections for which OSM contains regulators information. For all the other intersections there is
no such information available.

solved by using different data sources. First, images from
cameras or mobile mapping systems can be used to cre-
ate a traffic sign inventory system. However, acquiring
images with such equipment has high time and opera-
tional costs. Even using Google Street View images for
such purposes would have cost constraints, since access
to the associated API for large-scale usage would require
a license. A second more time- and cost-friendly solution
for tracking traffic regulators is GPS trajectories, which
can be easily collected from GPS-enabled devices such as
smartphones, and reveal the distinct behaviour of drivers
when approaching intersections. GPS trajectories can re-
veal the spatiotemporal behavior of moving objects, they
have already been used in various applications in this con-
text, such as understanding the spatiotemporal behavior of
tourists (Yao et al., 2021), mining medical periodic pat-
terns by identifying periodic visits to medical centers or
health professionals (Zhang et al., 2018), and extracting
spatiotemporal routine patterns of people’s (typical) com-
mute patterns (Qin et al., 2018). Finally, another free solu-
tion for detecting intersection regulators is to use intersec-
tion connectivity features, such as the length of the road
an intersection belongs to and the distance of an intersec-
tion from neighboring intersections. This information can
be extracted without changes from OSM.

The work presented in this paper uses vehicle GPS trajec-
tories combined with open data derived from OSM to iden-
tify the types of traffic regulators that control intersections.
The regulator types are predicted using machine learning
(random forest and gradient boosting) for each intersec-
tion approach (arm). The proposed method is tested on
two datasets, each containing different traffic regulators.

The paper is organized as follows. In Section 2, the related
research work is presented. In Section 3, the datasets used
to test the proposed approach are introduced. The method-
ology is described in Section 4. In Section 5 the results
of the experiments conducted on the two datasets are pre-
sented. A discussion of the main findings as well as future
research directions can be found in Section 6 and 7, re-
spectively.

2 Related Work

In this section, we briefly describe the main existing work
on traffic rule recognition from GPS trajectories (Sec-
tion 2.1). Based on their limitations that we identify, we
explain the motivation of the work presented in this pa-
per and enumerate its contribution to the existing body of
research (Section 2.2).

2.1 Existing Research Work

A comprehensive systematic literature review was con-
ducted by Zourlidou and Sester (2019) on the methods
and datasets investigating the detection and identification
of different traffic regulators at traffic intersections based
on GPS trajectory data from the population. They analyzed
several available articles and found that GPS trajectories
provide high predictive potential (over 80%). However, no
study examined all available regulator types at intersec-
tions using the same methodology or dataset. The various
traffic regulator types found in the literature are summa-
rized in the following categories: traffic signals (TS), stop
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sign (SS), priority sign (PS), yield sign (YS), uncontrolled
intersections (UN), roundabout (RB) and turning restric-
tions (TR). It should be noted, however, that most studies
cover only a subset of the available regulator types due to
limitations in the datasets.

The most recent study to our knowledge is that of Liao
et al. (2021), which presents a framework for detecting and
assessing traffic signals using a Deep Long Short-Term
Memory (DLSTM) network that achieves an Area Under
the ROC Curve (AUC) value of 0.95. Their goal is to de-
tect traffic signals and provide an estimation of the po-
tential area of influence based on the corresponding GPS
trajectories and other intersection contextual characteris-
tics such as intersection type, road type, and traffic flow
information. Another solution to the same binary classifi-
cation problem was proposed by Méneroux et al. (2020),
where they investigated traffic signal detection using speed
profiles. They found that a random forest classifier and
a feature extraction technique where functional analysis
of speed measurement series is combined with a wavelet
transform performed better among other tested approaches
(95% accuracy).

Golze et al. (2020) achieved 88% accuracy in predicting
intersection regulation types (traffic signals, priority signs
and unregulated junctions) by using a random forest clas-
sifier in conjunction with oversampling and enabled bag-
ging booster. They used physical features such as stand-
still events (number of events and the duration of closest
event to the junction), distance to the approaching inter-
section, vehicle speed, and percentage of trajectories with
at least one standstill event. In addition, statistical fea-
tures (minimum, maximum, mean, variance) were calcu-
lated for each physical feature similarly to Hu et al. (2015)
and Saremi and Abdelzaher (2015). On the same multi-
class classification problem, Cheng et al. (2020) trained a
deep learning classifier using speed profiles as classifica-
tion features. They used a conditional variational autoen-
coder that achieved a prediction accuracy of 90%.

Among the older works, the innovative works of Saremi
and Abdelzaher (2015) and Hu et al. (2015) stand out. The
methodology of Saremi and Abdelzaher (2015) is note-
worthy because it is the only approach that has used fea-
tures extracted from maps (OSM) to detect traffic con-
trollers. Motivated by the fact that regulators in the USA
are positioned based on certain criteria, such as the num-
ber and angle of intersection arms and vehicle speeds, they
proposed an inference method for regulators that uses such
static features that can be extracted from OSM. More-
over, on availability of dynamic crowd-sensed information
(GPS tracks), the inference model is enhanced by incorpo-
rating the additional dynamic information and indeed im-
proves classification performance. A random forest clas-
sification is used to predict three types of regulators: traf-
fic signals, stop signs and unregulated intersections. The
overall classification accuracy, with a confidence level of
80% in the prediction, is reported as 97%. Unfortunately,
no detailed classification report is given describing the re-

sults per regulator class, nor quantitative information on
the datasets used. Only the total number of intersection
approaches is given, not e.g. the number of regulators per
regulator class. Although we acknowledge this work as the
one that is methodologically closest to the research pre-
sented here, we cannot directly compare our results with
it.

Finally, Hu et al. (2015) using the duration of the last stop,
minimum crossing speed, number of delays, number of
stops, and distance from the intersection of the last stop
as features (min, max, mean and variance). They investi-
gate supervised and unsupervised methods with different
feature and implementation settings to address a classifi-
cation problem with three classes. Their results show that
a random forest classifier with enabled active- and self-
learning adapters achieves over 90% accuracy with 28%
of the training data.

2.2 Contributions

As mentioned at the beginning of the previous section, no
research work has so far been applied to different datasets
with different classes of regulators to evaluate the ability
to generalize the method to different classes of rules. A
method may be good at predicting traffic signals (lights),
stop signs and uncontrolled intersections, but is it equally
good at predicting priority signs? Is a single classification
feature sufficiently descriptive to distinguish between dif-
ferent groups of regulators? In addition, some methods are
applied in the context of two-class classification (traffic
signals, not traffic signals) problems providing excellent
performance, but would they be equally good if they are
applied to three-class problems?

It becomes clear that open reference datasets are missing
so far, in which both the trajectories and the regulators’
ground-truth map (label information) are available and re-
searchers can use it as a benchmark when it comes to com-
paring the classification performance of the proposed ap-
proaches. Since for the scope of this paper we manually
mapped the regulators of the road network of an open tra-
jectory dataset, as explained in Section 3, we placed this
dataset in an open repository so that other researchers can
test their methodologies and compare the classification re-
sults with others.

The work presented in this paper differs from existing re-
search in the following ways 1) a feature vector is pro-
posed that includes the number and duration of decelera-
tion events in addition to vehicle stop events. Moreover,
in addition to the duration of the last stop event, the total
duration of all stops and decelerations before crossing an
intersection is also considered. 2) The proposed method-
ology is tested on two datasets with different regulators,
and 3) a powerful classification model is tested, along with
random forest, which has dominated many Kaggle compe-
titions recently, the XGBoost, that is an implementation of
the Gradient Boosted Decision Trees algorithm. Finally, an
additional contribution is: 4) the ground-truth regulators’
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map of an open trajectory dataset created for the needs of
this work is made publicly available for other researchers.

3 Data

3.1 Data description

Two datasets from the cities Hannover and Chicago were
used to test the proposed method for traffic regulator iden-
tification. The trajectories of the Hannover (Germany)
dataset were collected by the authors themselves with an
average sampling rate of 1Hz. The Chicago dataset (USA)
is publicly available by Ahmed et al. (2015) and has an
average sampling rate of 0.28Hz. Necessary to this work
is the availability of ground-truth information of intersec-
tion regulators which is required both for the learning part
of the method (training of a classifier) and for evaluating
its predictive performance. The ground-truth information
for the Hannover dataset was created manually by on-site
observation (visiting the intersections and mapping their
regulator types). For the Chicago dataset, we used the
Mapillary street imagery data (Mapillary, 2022), verified
by other sources, and manually extracted the intersection
rules.

Each intersection is divided in intersection arms or ap-
proaches. Therefore, a four-way intersection has four
arms, whereas a T-junction has three. Often not all arms
of the same intersection are controlled by the same regula-
tor (e.g. priority/yield controlled intersections), the notion
of traffic regulator in the context of this work refers to the
regulator of each intersection arm. As such, the Chicago
dataset has 156 intersections with 499 arms (regulators)
and the Hannover dataset 1064 intersections with 3523
arms. Regarding the regulator types, in Chicago dataset
93 arms are uncontrolled (UN), 139 are stop sign (SS) and
264 traffic signal (TS) controlled. In Hanover, 850 are UN,
1199 are priority-controlled (PS), 558 are yield controlled
(YS), 26 are SS and 890 are TS. Figure 2 gives an overview
of the extent of the collected GPS trajectories in the exam-
ined cities. The Chicago dataset has fewer junctions com-
pared to Hannover (156 vs. 1064) but each junction arm
is on average more densely sampled by the available tra-
jectories. The Hannover dataset has 1204 trajectories and
the Chicago 889. The minimum, the 1st, 2nd and 3rd per-
centiles, as well as the average and maximum of trajectory
crossings per intersection arm is 1, 3, 11, 84, 54, 373 for
Chicago and 1, 1, 3, 9, 12, 213 for Hannover.

As for the regulator rule classes, the Hannover dataset con-
tains traffic signals, priority, yield and stop signs, as well as
unregulated intersections (right-of-way rule). Since there
are only 26 stop-controlled intersection arms, we excluded
this regulator type from the classification due to insuffi-
cient samples for training and testing. Similarly, the yield-
controlled intersection category was excluded because the
trajectories crossing yield-controlled intersections were
very sparse. Of the 558 yield-controlled arms, only 122

were sampled with at least one trajectory, and most of
these arms had very few trajectories. 436 yield-controlled
arms were not crossed by any trajectory. Therefore, this
category was also omitted. With respect to the Chicago
dataset, the roads are controlled by three types of regula-
tions: traffic signals, stop signs, and right-of-way priority
(uncontrolled intersections).

OpenStreetMap (OSM contributors, 2022) provides freely
usable spatial data for almost all places around the globe
and has become known as the most popular Volunteered
Geographic Information (VGI) system (Jokar Arsanjani
et al., 2015). In this work, given the trajectories that cross
certain intersections in Chicago and Hannover datasets,
we exported road network distance related information for
those intersections from OSM.

That way we have for each of the two cities, two datasets:
one that contains dynamic information (trajectories) and
another with static information (intersection related dis-
tances). More details about the feature extraction from the
two datasets are given in Section 4.2.

3.2 Data and Software Availability

The groundtruth map from the Chicago dataset, is accessi-
ble in a public repository (Zourlidou and Golze, 2022) and
has an open data licence. The Chicago trajectory dataset,
as already mentioned, is publicly available by Ahmed et al.
(2014). The Hannover dataset is not available due to pri-
vacy restrictions. The trajectories have been collected from
the authors, capturing the daily car drives from home to
work, shopping centers, kids’ schools, etc., therefore the
containing information could compromise the privacy of
research participants. The Python code of all experiments
is the intellectual property of the first author of this pa-
per and intends to use and extend it for further investiga-
tions in the context of on-going doctoral studies. There-
fore, the code will be available after completion of the rel-
evant studies and publications.

4 Methodology

The proposed approach can be divided into three main
steps, which are explained in the following sections. First,
the trajectory data is pre-processed so that each trajectory
is associated with the intersection approaches it crosses.
Afterwards, features are extracted from the pre-processed
trajectories (dynamic model) and from the OSM (static
model), for each intersection arm. In the last step, the clas-
sification process is performed under different experimen-
tal settings.

4.1 Data Pre-processing

The input data, as previously mentioned, are twofold: tra-
jectory data and OSM. Each trajectory is a time-ordered
sequence of GPS data and must be associated with the in-
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(a) Hannover dataset. (b) Chicago dataset.

Figure 2. The two trajectory datasets used in this study, (a) Hannover dataset and (b) Chicago dataset.

tersections it crosses. Therefore, in the first step of data
pre-processing, trajectories are associated with all the in-
tersections they cross from the beginning to the end of
their journey. This way each intersection arm of the dataset
is associated with all the crossing trajectories and each
trajectory is associated with all the intersection arms that
crosses.

An important aspect of the methodology is that the clas-
sification process applies to each intersection approach of
an intersection and not to the entire intersection. Due to
this fact, not all arms of the same intersection are always
regulated by the same rule. For example, a T-intersection
may be controlled by one-way stop, or a four-way inter-
section may be controlled by priority/yield. Therefore, the
classification features describe each intersection arm. For
the dynamic model, classification features are calculated
from the trajectories within the road segment connecting
the respective intersection arm to the adjacent intersec-
tion arm. This is done so that the implementation is not
parameter-depended and is valid for each dataset and for
all intersections in a dataset. For example, we could com-
pute the features of an arm at a distance of 50 meters from
the center of the intersection, but this distance might be
large for some intersections (it could also capture nearby
intersections within this radius, not just the road segment
connecting two junctions) or very small for large intersec-
tions.

In addition, for each trajectory that crosses an intersection
arm, the direction of crossing is calculated, i.e. whether
the vehicle is going straight or turning left or right. This
is done by calculating the angle of entry and exit from the
respective intersection arm. This information is needed to
be able to select, e.g. only the straight trajectories from the
dataset for feature calculation. Similarly to Hu et al. (2015)
and Golze et al. (2020), we ignore the turning trajectories
because the turning maneuver affects the crossing speed
and causes deceleration and stopping events related to the
maneuver itself rather than to the traffic regulators.

For the static model, where the features are calculated
from OSM, the map is first downloaded from the area of
interest and then the centers of the intersections are esti-
mated. This information can not be obtained directly from

OSM and is therefore estimated for each intersection as the
point where different road segments intersect each other.
For each intersection approach the features are then calcu-
lated as explained in Section 4.2.2.

4.2 Feature Definition

In this section we explain the features we derive from tra-
jectories (dynamic model) and OSM (static model). The
hybrid approach uses the extracted features both from tra-
jectories and OSM.

4.2.1 Dynamic model

The set of features resulting from GPS trajectories is called
dynamic (Saremi and Abdelzaher, 2015), as trajectories
are not static entities. These dynamic features are esti-
mated for each individual intersection arm from the tra-
jectories that cross it and are summarized in Table 1. They
concern various aspects of the stopping and deceleration
events that take place within half the distance of the road
segment connecting each intersection arm to its neighbour,
as well as the speed at which vehicles pass.

Figure 3a depicts a four-way intersection with four ap-
proaches, namely j−arm, k−arm, i−arm and l−arm.
Each of these arms is connected to an intersection arm
from a nearby junction via a road segment depicted by
green line. Afterwards, for each trajectory that crosses
an intersection approach, the trajectory-features are calcu-
lated within half the green distance which is depicted by
red dashed line in the same Figure 3a and is called a semi-
approach segment. The per trajectory features are called
physical (Hu et al., 2015) and are enlisted in the first col-
umn of Table 1. The per intersection arm features, calcu-
lated within the semi-approach segment are called statis-
tical and are enlisted in the second and third column of
the Table 1. More specifically the stopping/deceleration re-
lated features are the:

1. number of stop/decel. events identified in a tra-
jectory traj while crossing an intersection approach
armi within the semi-approach segment of armi
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(a) Dynamic model (b) Static model.

Figure 3. (a) Illustration of the road segments along which the features of the dynamic model are calculated (red-dashed lines). (b)
Illustration of the road segments along the approaches of an intersection which are used as features in the static model (red, green and
red lines).

Table 1. Overview of the features derived from the dynamic model.

Physical Feature* Statistical Features derived from Physical**

St
op

ev
en

ts

Number of stops avg_nstops var_nstops
Duration of last stop avg_dur_lstop var_dur_lstop
Duration of all stops avg_dur_all_stops var_dur_all_stops
Mean Duration of all stops avg_mean_dur_all_stops var_mean_dur_all_stops
Median Duration of all stops avg_med_dur_all_stops var_med_dur_all_stops
Distance of last stop avg_dist_lstop var_dist_lstop
Mean Distance of all stops avg_mean_dist_all_stops var_mean_dist_all_stops
Median Distance of all stops avg_med_dist_all_stops var_med_dist_all_stops

D
ec

el
.e

ve
nt

s

Number of decel. events avg_ndecel var_ndecel
Duration of last decel. event avg_dur_ldecel var_dur_ldecel
Duration of all decel. events avg_dur_all_decels var_dur_all_decels
Mean Duration of all decel. events avg_mean_dur_all_decels var_mean_dur_all_decels
Median Duration of all decel. events avg_med_dur_all_decels var_med_dur_all_decels
Distance of last decel. event avg_dist_ldecel var_dist_ldecel
Mean Distance of all decel. events avg_mean_dist_all_decels var_mean_dist_all_decels
Median Distance of all decel. events avg_med_dist_all_decels var_med_dist_all_decels

Sp
ee

d Minimum speed avg_min_speed var_min_speed
Maximum speed avg_max_speed var_max_speed
Average speed avg_avg_speed var_avg_speed

* Derived per trajectory, ** Derived per intersection arm, i.e. from all trajectories that cross the intersection approach

2. duration of the last stop/decel. event (closest to
intersection junction center) of traj within the semi-
approach segment of armi

3. duration of all stop/decel. events of traj within
the semi-approach segment of armi

4. mean duration of all stop/decel. events of traj
within the semi-approach segment of armi

5. median duration of all stop/decel. events of traj
within the semi-approach segment of armi

6. the distance of the last stop/decel. event of traj
within the semi-approach segment armi from the in-
tersection center

7. mean distance of all stop/decel. events of traj
within the semi-approach segment armi from the in-
tersection center

8. the median distance of all stop/decel. events of
traj within the semi-approach segment armi from
the intersection center
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The speed-related features are:

1. minimum speed of the vehicle of traj while ap-
proaching the intersection through the intersection
arm armi

2. maximum speed of the vehicle of traj while ap-
proaching the intersection through the intersection
arm armi

3. mean speed of the vehicle of traj while ap-
proaching the intersection through the intersection
arm armi.

Therefore, 19 physical features describe how a trajectory
crosses an intersection arm. In order to describe the inter-
section approaches we compute the average and variance
of the physical feature values of all trajectories crossing an
intersection arm. Hence, in the dynamic model, each arm
is represented by a feature-vector with 19x2= 38 values.

The algorithmic approach to realize the estimation of the
dynamic features is described in Algorithm 1.

Algorithm 1 Traffic Regulation Detection from GPS Data
Data: TrajSet: GPS tracks, Y : ground truth regulators’

labels
Result: Ypred: Predicted regulator labels
for ∀ traj in TrajSet do

Detect all stop events within traj
Detect all deceleration events within traj

end
for ∀ intersection arm armi do

Find the armj that is connected with armi

Find the trajectories that cross armi

for ∀ traj that crosses armi do
Find the turn direction (straight, left, right)
Find the stop events of traj within the semi−
approach segment defined between armi and
armj

Find the decel events of traj within the semi−
approach segment defined between armi and
armj

Compute the crossing speed
end
Add feature vector of armi to FeaturesDBT

end
Classification with data from FeaturesDBT
Print classification report

4.2.2 Static model

The second set of features is extracted from OSM and re-
ferred to as static. They are proposed by Saremi and Ab-
delzaher (2015) and similar to the dynamic features, they
are calculated for each intersection arm. The five static fea-
tures are depicted in Figure 3b; their description is as fol-
lows:

1. maxspeed is the maximum allowed speed along
the armi. Intersections controlled by a traffic signals

are expected to be on roads with a higher maximum
speed than, for example, intersections controlled by
a stop sign.

2. category refers to the road type category of the
armi ( e.g. primary, secondary, tertiary, residential).
The rationale for using this feature is similar to 1.

3. e2e is the end-to-end distance of the road that the
armi belongs to (blue line in Figure 3b). The length
of a road can reflect its importance in the road net-
work. For example, an avenue may serve more traffic
than a 50-metre-long road and therefore their inter-
section regulations may differ accordingly. The same
rationale applies also to the other distance-based fea-
tures (4, 5).

4. semi_dist of an approach armi is the distance
from the center of the junction that the armi belongs
to, until the center of the most distant junction that
the armi is connected to (green line in Figure 3b).

5. close_dist of an approach armi is the distance
from the center of the junction that the armi belongs
to, until the center of the nearest junction that the
armi is connected to (red line in Figure 3b).

In this work we examine two feature settings for the static
model. One is along with the work of Saremi and Ab-
delzaher (2015), referred from now as default setting static
model, containing an extended feature set. The other one
is a simplification of it, referred to as simplified-setting and
results to fewer features. The knowledge representation for
armi under the default setting is:

id_i, (speedi, cati, e2ei, semii, closei), (speedl,
catl, e2el, semil, closel), (speedj , catj , e2ej ,
semij , closej), (speedk, catk, e2ek, semik, closek)

where for the description of an armi is also included
the information from the adjacent arms (arml, armj and
armk) of the same junction. Under the simplified setting:

id_i, (speedi, cati, e2ei, semii, closei)

where only the information for the armi is included.

The classification steps for the static model are described
in Algorithm 2.

Algorithm 2 Traffic Regulation Detection from OSM Ex-
tracted Features
Data: OSM, Y : ground truth regulator labels
Result: Ypred: Predicted regulator labels
interSet← extracted Intersection Centers
for ∀ armi of interi ∈ interSet do

Compute maxspeed, category, e2e_dist, semi_dist,
close_dist

Add feature vector of armi to FeaturesOSM
end
Classification with data from FeaturesOSM
Print classification report
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Figure 4. The evolution of a single Decision Tree to the gradient boosting approach XGBoost.

4.2.3 Hybrid model

The hybrid model is a composite of the dynamic and static
model, using all the features of both models. As shown
in Section 5, although the hybrid model outperforms the
two models, additionally a feature selection is applied to
identify the most important features as well as a tuning
of some important parameters of the classifier. In the next
section we explain the classification settings for testing the
proposed methodology.

4.3 Classification Settings

The classification of traffic regulator types is done using
supervised learning techniques. Three different settings,
one for each model (static, dynamic, hybrid) are tested
for each of the two datasets. In addition, two classification
methods are tested for each experiment. The first method
is the random forest classifier, which consists of several
individual decision trees. These decision trees are trained
on a random subset of the available training data using the
bagging approach. The result of a random forest is the sum
over all its predictors.

The second method, is the gradient boosting approach. In
the context of the problem it can be considered as a gra-
dient descent minimization procedure over a loss function
estimated each time a tree is added to the model (weak
learner). For the implementation we used the XGBoost
(XGBoost Python, 2022) library which has recently dom-
inated many Kaggle competitions. The evolution of a sim-
ple decision tree up to XGBoost is illustrated in Figure 4,
where the main features of the ensemble tree-based learn-
ing are given.

To evaluate the classification process, the accuracy, the F-
measure and the true positive (TPR), sensitivity, and false
positive rate (FPR), fall-out, are estimated. The accuracy
is the percentage of correctly classified samples, while the
F-measure is the harmonic mean of precision and recall,
which are calculated from true positives (TP), false pos-
itives (FP), true negatives (TN) and false negatives (FN).

These four elements are represented in a confusion matrix,
where the (per class) performance can be visually evalu-
ated. The TPR and FPR are defined as:

TPR=
TP

TP +FN
; FPR=

FP

FP +TP
(1)

5 Results

5.1 Static Model

The Table 2 shows the classification results for the static
model in the two datasets using both classification meth-
ods. A more detailed classification report with the perfor-
mance by regulator type can be found in Appendix A1.

Regarding the simplified setting static model, in Hannover,
gradient boosting (GB) performs slightly better than ran-
dom forest (RF), with an F-Measure of 0.61 and 0.60 re-
spectively. In Chicago, both classifiers show similar per-
formance with an F-measure of 0.71. Although the per-
formance in Chicago is better than in Hannover, it is still
low. This low performance is also highlighted by the true
positive (TPR) and false positive (FPR) rates depicted in
Figure 5. In Hannover, priority signs (PS) have the highest
FPR (see Figure 5a and 5c) compared to uncontrolled in-
tersections (UN) and traffic signals (TS), while in Chicago,
TS have the highest FPR, which is justified by the very low
TPR of UN (compare Figure 5e and 5g). The average TPR
and FPR in Hannover for the GB model are 0.66 and 0.16
and in Chicago 0.62 and 0.2, respectively.

Regarding the default setting static model, in Hannover,
gradient boosting performs slightly better than random
forest, with F-Measure 0.87 and 0.86 respectively. In
Chicago, RF performs better than GB, with an F-measure
of 0.85 versus 0.83 for GB. Performance, as depicted in
the TPR/FPR plots (see Figure 5), shows no differences
between the regulator types, as in both datasets TPR and
FPR have similar per class values (Figure 5b, 5d, 5f, 5h).
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Table 2. Classification results of the static model.

Dataset Classifier Recall Precision F-Measure Accuracy
simpl.
setting

default
setting

simpl.
setting

default
setting

simpl.
setting

default
setting

simpl.
setting

default
setting

Hannover
RF 0.61 0.86 0.60 0.86 0.60 0.86 0.61 0.86
GB 0.61 0.87 0.61 0.87 0.61 0.87 0.61 0.87

Chicago
RF 0.73 0.85 0.71 0.86 0.71 0.85 0.73 0.85
GB 0.72 0.84 0.71 0.84 0.71 0.83 0.72 0.84

(a) Simplified (RF), Hanover. (b) Default (RF), Hanover. (c) Simplified (GB), Hanover. (d) Default (GB), Hanover.

(e) Simplified (RF), Chicago. (f) Default (RF), Chicago. (g) Simplified (GB), Chicago. (h) Default (GB), Chicago.

Figure 5. True positive (blue) and false positive (red) rates of the static model (simplified and default feature settings) for the Hannover
(first row) and Chicago datasets (RF: random forest, GB: gradient boosting).

In Hannover, UN has a slightly better TPR than the other
classes (Figure 5b and 5d), while in Chicago, TS has the
highest TPR, although not much higher than the other
classes (compare Figure 5f and 5h). The average TPR and
FPR in Hannover for the GB classifier are 0.87 and 0.07
and in Chicago for the RF model 0.84 and 0.08 respec-
tively.

Therefore, for both the simplified and default setting static
models, the choice of classifier (RF versus GB) makes a
small difference. However, the default setting outperforms
the simplified one, which means that indeed for the clas-
sification of a intersection approach, information from the
neighboring arms belonging to the same intersection is an
important aspect. Hence, for the remaining experiments
the default setting features are used.

5.2 Dynamic Model

Table 3 shows the classification results for the dynamic
model on the two datasets. A more detailed classification
report with performance by regulator type can be found
in the Appendix B1. For the Hannover dataset, GB per-
forms better than RF (F-measure 0.85 vs. 0.83). Similarly,
in Chicago, GB has an F-measure of 0.78 while RF has an
F-measure of 0.77.

In Hannover, for both classifiers, the highest FPR is ob-
served in the PS category, which can be explained by the
low TPR of the UN category (see Figure 8a and 8b). This
implies that UN intersection arms are erroneously classi-
fied more often as PS controlled. In addition, the PS and
TS categories show a higher TPR than 80%. The average
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Table 3. Classification results of the dynamic model.

Dataset Classifier Recall Precision F-Measure Accuracy

Hannover
RF 0.83 0.84 0.83 0.83
GB 0.85 0.86 0.85 0.85

Chicago
RF 0.78 0.79 0.77 0.78
GB 0.78 0.79 0.78 0.78

(a) RF, Hanover. (b) GB, Hanover. (c) RF, Chicago. (d) GB, Chicago.

Figure 6. True positive (blue) and false positive (red) rates of the dynamic model for the Hannover and Chicago datasets (RF: random
forest, GB: gradient boosting).

TPR and FPR for the RF and GB classifier in Hannover
are 0.81 and 0.09 (RF) and 0.83 and 0.085 (GB).

In Chicago, for both classifiers, the highest FPR is ob-
served in the TS category, which is close to the corre-
sponding measure for the UN class (see Figure 6c and 6d).
TPRs are similar within the three regulator classes, with
the lowest FPR observed in the SS category. However, the
FPR for the UN and TS samples is quite high, which given
the high FPR of SS, means that the UN class is more of-
ten misclassified as TS and TS as UN (this fact is easily
visible in the confusion matrices in the Appendix C1). In-
terestingly, such behavior is not noticeable in the results
of the Hannover dataset. The average TPR and FPR for
the RF and GB models are 0.77 and 0.12 (RF) and 0.79
and 0.11 (GB), respectively.

When comparing the dynamic to the static model, it out-
performs the simplified setting static model but falls short
of the default setting for both datasets. In Hannover, the
default setting static model has an F-measure of 0.87,
while the dynamic model has 0.85. In Chicago, the differ-
ence between the static and dynamic models is larger, with
the default setting static model having an F-measure of
0.85, while the dynamic model has an F-measure of 0.78.
One explanation for the poor performance of the dynamic
model on the Chicago dataset may be the low sampling
rate of the GPS samples, which may affect the detection
of short duration deceleration/stop events.

As previously reported in Section 3, the Chicago dataset
has an average sampling rate of 0.28Hz, which is approx-
imately one sample every three seconds. This means that

the detected movement events as well as the speed esti-
mated from the GPS points are "smoothed out" and no
events happened within those 3 sec can neither be recov-
ered nor detected. What we can estimate is only the dif-
ference in speed from time t to time t+3sec (on average)
and the movement events that have a duration longer than
the time interval between at least two GPS samples.

5.3 Hybrid Model

As mentioned in Section 4.2.3, by combining the fea-
tures of the static and dynamic models, we create a new
model (hybrid model). We tested this model in both of the
datasets, with the RF and GB classifiers. The results are
presented in Table 4. On the Hannover dataset, as shown
in Exp.1 and Exp.2, GB performs better than RF, with
an F-measure of 0.92 (GB) versus 0.89 (RF). Similarly
in Chicago, Exp.5 and Exp.6, GB performs 0.91 versus
0.89 for RF. Interestingly, the performance of the hybrid
model in the two datasets is similar, regardless of the clas-
sifier, compared to the dynamic model, where a signifi-
cantly higher performance in Hannover than in Chicago
was observed (Table 3).

Regarding the TPR/FPR of the GB classifier on the two
datasets, as seen in Figure 7, the TPRs of the three regu-
lator classes are similar. In Hannover, the TPRs for UN,
PS and TS are 0.88, 0.94, 0.90 and in Chicago for UN, SS
and TS, 0.92, 0.86 and 0.92 respectively. In Chicago, FPSs
are also similar across regulator categories (UN: 0.04, SS:
0.04, PS: 0.064). In contrast, in Hannover, the FPR of PS is
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Table 4. Classification results of the hybrid model.

Dataset Exp. Classifier Feature
Selection

Tuning Recall Precision F-Measure Accuracy

Hannover

Exp.1 RF No No 0.89 0.89 0.89 0.89
Exp.2 GB No No 0.92 0.92 0.92 0.92
Exp.3 GB Yes No 0.94 0.94 0.94 0.94
Exp.4 GB Yes Yes 0.94 0.94 0.94 0.94

Chicago

Exp.5 RF No No 0.89 0.91 0.89 0.89
Exp.6 GB No No 0.91 0.92 0.91 0.91
Exp.7 GB Yes No 0.93 0.92 0.92 0.93
Exp.8 GB Yes Yes 0.93 0.92 0.92 0.93

remarkably higher than in the other regulator classes (FPR
in UN:0.01, PS: 0.096, TS: 0.04). The average values of
TPRs/FPRs in Hannover are 0.91 and 0.05 and in Chicago
0.90 and 0.05. Compared to the average TPR/FPR of the
best default setting static model (GB in Hannover and RF
in Chicago), the hybrid model has an increase/decrease of
4%/2% in Hannover and 6%/3% in Chicago. Compared to
the dynamic model, the hybrid model has a corresponding
increase/decrease of 8%/4% in Hannover and 11%/6% in
Chicago.

In addition, we examined whether selecting the most im-
portant features would further increase the performance of
the GB model. Figure 8 illustrates the importance of each
feature in the classification process. The first observation
from the two graphs is that the important features in each
dataset are different. This could come from the fact that
each dataset contains different traffic regulators. Another
possibility could be the influence of the sampling rate on
the detection of movement events mentioned in a previ-
ous section. A second observation is that in the Hannover
dataset only a few features are distinct in importance from
the total of 58 features.

(a) Hanover. (b) Chicago.

Figure 7. True positive (blue) and false positive rates (red) for
the Hannover and Chicago datasets with gradient boosting clas-
sification (Exp.2 and Exp.6 from Table 4).

The avg_mean_dur_all_decels, var_dur_ldecel,
maxspeed1, var_mean_dur_all_decels and category1.
In the Chicago dataset, overall, there are more impor-

tant features compared to the few most important
features in Hannover: var_mean_speed, e2e_dist4,
category1, category2, avg_min_speed, semi_dist1,
avgdist_l_stop, e2e_dist1, close_dist3, avg_nstops,
etc. Furthermore, the dynamic features in the Hannover
dataset are mostly related to the deceleration events,
whereas in Chicago to stop events. This finding is rational
given that the Chicago dataset has stop signs in contrast
to the priority signs in Hannover. Stop signs cause mostly
stop events whereas at priority sign locations, deceleration
events are mostly observed when e.g. the vehicle in front
wants to turn in the intersection and decelerate in order
to complete the turn maneuver (or stop if turn left). Fur-
thermore, in Chicago, static features are more important
than dynamic features. Given the low performance of
the dynamic model in the Chicago dataset, we can see
that in the hybrid model the static features make up for
this difference and combined with the few important
dynamic features the performance of the hybrid models
outperforms the individual models.

The results of the classification using only the most signifi-
cant features are shown in Table 4, Exp.3 and Exp.7. In the
Hannover dataset there is an improvement in F-measure
and accuracy of 0.02, (from 0.92 in Exp.2 to 0.94) and in
Chicago the F-measure increases from 0.91 to 0.92 and the
accuracy from 0.91 to 0.93.

Finally, we experimented with tuning the parameters of the
GB classifier, namely the number of decision trees, their
size (depth), row subsampling, column subsampling (per
tree and split) and learning rate. We omit to report the re-
sults of the tuning experiments due to space limitation. An
example is illustrated in Figure 9, where we tuned two pa-
rameters together, the number and size of decision trees.
As shown, the negative loss function is maximized for a
maximum depth equal to 4 (red line), for 25 decision trees
(n_estimators).

Several experiments were carried out, tuning various com-
binations of the above-mentioned parameters, as well as
tuning each parameter separately. The use of tuned row
and column subsampling values did not improve perfor-
mance on any of the datasets. By tuning the size and num-
ber of trees, as well as the learning rate, as shown in Ta-
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(a) Hanover.

(b) Chicago.

Figure 8. Feature importance for the Hannover and Chicago datasets.

ble 4 (Exp.4 and Exp.8), the classification performance re-
mained unchanged.

Regarding the TPRs and FPRs of the GB classifier (Exp.4
and Exp.8) where feature selection and parameter tuning
are enabled, Figure 10 illustrates the increase in TPR and
decrease in FPR for both datasets, across all categories,
compared to the GB default model (Exp.2 and Exp.6, Fig-
ure 7).

In the Hannover dataset the average TPR/FPR is 0.93/0.04,
while per regulator class it is in UN 0.91/0.007, PS
0.95/0.08 and TS: 0.96/0.03. The higher FPR in PS and
lower TPR in UN indicates that UN is often misclas-
sified as PS (compare confusion matrix Figure E1a in
the Appendix). Compared to the dynamic model, the in-
crease/decrease in the average TPR/FPR is 0.1/0.05, i.e.,
an increase in TPR of 12% and a decrease in FPR of
55%. Compared to the default setting static model, the in-

Figure 9. Tuning parameters of the gradient boosting classi-
fier for the Hannover dataset: the number of decision trees
n_estimators and the size of each tree, depth.
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(a) Hannover. (b) Chicago.

Figure 10. GB models, with feature selection and parameter tun-
ing enabled.

crease/decrease in the average TPR/FPR is 0.06/0.03, i.e.
an increase in TPR by 7% and a decrease in FPR by 43%.

In the Chicago dataset the average TPR/FPR is 0.91/0.04,
while by regulator class it is UN 0.92/0.03, SS 0.83/0.03
and TS: 0.97/0.05. Of interest is the lower TPR of SS
compared to the other categories and the slightly higher
FPR of TS. Compared to the dynamic model, the in-
crease/decrease in the average TPR/FPR is 0.12/0.07, i.e.
an increase in TPR of 15% and a decrease in FPR of
64%. Compared to the default setting static model, the in-
crease/decrease of the average TPR/FPR is 0,07/0,04, i.e.
an increase of TPR by 8% and a decrease of FPR by 50%.

6 Discussion

The main finding of this work can be summarized as fol-
lows:

1. The dynamic model has comparable performance
to the default setting static model on the Han-
nover dataset, but significantly lower on the Chicago
dataset. We believe that this problem is not a weak-
ness of the proposed dynamic model, but is instead
inherited due to the limitations of the dataset (low
sampling rate).

2. The hybrid model outperforms the two individual
models. Even in the Chicago dataset with the weak
dynamic features, the map features combined with
these weak features not only compensate the per-
formance of the dynamic model, but reach compa-
rable levels of accuracy/F-measure to the Hannover
dataset, where the static and dynamic models per-
form similarly.

3. The feature selection, as well as the model tuning
(number and size of trees, learning rate) of the gradi-
ent boosting classifier either improves or leaves the
performance untouched.

4. The choice of classifier (random forest vs. gradient
boosting) in the static model does not seem to affect

the performance. However, in the other two models,
where the number of features is larger than in the
static model, gradient boosting outperforms random
forest.

5. The hybrid model provided a performance be-
tween 0.92 and 0.94 of F-measure. In Hannover, it
improved the TPR by 12% compared to the dynamic
model and by 7% compared to the static model. The
FPR also decreased by 55% and 43% respectively.
In Chicago, it also improved TPR by 15% compared
to the dynamic model and by 8% compared to the
static model. FPR also decreased by 64% and 50%
respectively.

6. When the performance is compared to existing
works under similar data settings (e.g. same regula-
tor types), the performance of the proposed model
outperforms them, e.g. Cheng et al. (2020) and
(Golze et al., 2020).

Finally, a future work topic is to examine the possibili-
ties of transferability of the hybrid model from one city
to another, i.e. training the model in one city and testing
it in another one (e.g. training in Hannover and testing in
Chicago). This aspect of the problem is motivated by the
labeled data limitation discussed earlier.

Furthermore, semi-supervised techniques, such as co-
training, which exploits different views of the data (i.e. two
different feature sets that provide complementary informa-
tion about the instance and are conditionally independent),
are worth considering in the context of the problem, as
they can provide good performance under small amounts
of labeled data and large amounts of unlabeled data.

In addition, an important aspect of the problem to consider
is whether the tested approaches (static, dynamic and hy-
brid) would work in smaller cities, where the distance from
one intersection to another is shorter and therefore the ex-
tracted classification features are calculated over a shorter
road length. Moreover, driving behaviour in such cities
may be additionally influenced by sources other than traf-
fic regulators, such as pedestrians who, knowing that cars
are moving at low speed, may cross streets more freely.
In addition, smaller cities may have an irregular street lay-
out unlike Chicago which has an almost perfect grid-like
network consisting of rectangular street blocks. The same
question arises also for larger cities with more complex
street networks than those considered in this research pa-
per, such as Berlin and Athens.

Finally, another important aspect of the problem is
whether the proposed methodology could give equally
good results when the trajectory data is less dense or when
the trajectory densities of the dataset are irregular, e.g. one
part of a city is sampled from hundreds of trajectories and
other parts from only a few tracks. Therefore, further in-
vestigation is needed to clarify whether the number of tra-
jectories affects the performance and if so, how much.
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7 Conclusion

The motivation for this article is the very small percentage
of intersection regulators found in public available map
databases. Although traffic regulators, such as traffic sig-
nals and stop signs, affect the traffic flow and could there-
fore be used in navigation applications to optimise travel
time or estimate fuel consumption, they are still largely ab-
sent from map databases. Moreover, intersections are loca-
tions that require drivers’ attention, so mapped traffic reg-
ulators could be used in driver assistance applications in
various safety scenarios. However, mapping and updating
this information for each intersection of a road network is
an expensive task if traditional surveying procedures are
followed.

In this paper, we present a method to identify traffic regu-
lators using vehicle trajectories that can be easily recorded
with low-cost mobile phone devices, as well as infor-
mation extracted from the public OpenStreetMap, which
is freely available. The method is being tested on two
datasets from two different cities, Hannover and Chicago,
where their intersections are controlled by different regu-
lator types. Two classification methods, random forest and
gradient boosting, are tested using either dynamic features
(trajectories), static (OSM data only) or a combination of
both. The results show that gradient boosting classification
with static-dynamic features can predict traffic regulators
with high accuracy (93% in Chicago and 94% in Han-
nover) and with per class predictions balanced. The hy-
brid model outperforms the other inference models (static
and dynamic), highlighting the role that crowd-sourced in-
formation can play in detection scenarios such as the one
considered here, which can increase classification perfor-
mance when used in combination with easily extracted and
free information derived from OSM.
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Table A1. Classification results of the static models.

Dataset Classifier Label Recall Precision F-Measure Accuracy Support
simpl.
setting

default
setting

simpl.
setting

default
setting

simpl.
setting

default
setting

simpl.
setting

default
setting

simpl.
setting

default
setting

Hannover RF

UN 0.81 0.92 0.68 0.87 0.74 0.89 821 812
PS 0.60 0.84 0.58 0.86 0.59 0.85 1172 1131
TS 0.43 0.84 0.54 0.87 0.48 0.86 864 845

Weigh.Avg. 0.61 0.86 0.60 0.86 0.60 0.86 2857 2788
0.61 0.86

Hannover GB

UN 0.79 0.92 0.67 0.88 0.73 0.90 821 812
PS 0.59 0.86 0.60 0.85 0.59 0.86 1172 1131
TS 0.48 0.83 0.57 0.89 0.52 0.86 864 845

Weigh.Avg. 0.61 0.87 0.61 0.87 0.61 0.87 2857 2788
0.61 0.87

Chicago RF

UN 0.34 0.87 0.48 0.77 0.39 0.81 88 86
SS 0.73 0.76 0.77 0.80 0.75 0.78 134 133
TS 0.85 0.89 0.76 0.92 0.80 0.91 263 261

Weigh.Avg. 0.73 0.85 0.71 0.86 0.71 0.85 485 480
0.73 0.85

Chicago GB

UN 0.44 0.78 0.49 0.76 0.46 0.76 88 86
SS 0.72 0.74 0.76 0.75 0.73 0.74 134 133
TS 0.81 0.90 0.77 0.92 0.79 0.91 263 261

Weigh.Avg. 0.72 0.84 0.71 0.84 0.71 0.83 485 480
0.72 0.84

(a) Simplified setting (GB), Hanover. (b) Default setting (GB), Hanover.

(c) Simplified setting (RF), Chicago. (d) Default setting (RF), Chicago.

Figure A1. Confusion matrices of the static model for simplified and default feature settings, for Hannover and Chicago datasets.
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Table B1. Classification results of the dynamic model.

Dataset Classifier Label Recall Precision F-Measure Accuracy Support

Hannover

RF

UN 0.71 0.62 0.65 69
PS 0.84 0.87 0.85 300
TS 0.87 0.88 0.87 171

Weigh.Avg. 0.83 0.84 0.83 540
0.83

GB

UN 0.75 0.69 0.71 69
PS 0.85 0.89 0.87 300
TS 0.88 0.86 0.87 171

Weigh.Avg. 0.85 0.86 0.85 540
0.85

Chicago

RF

UN 0.79 0.77 0.77 52
SS 0.75 0.74 0.72 29
TS 0.78 0.82 0.79 71

Weigh.Avg. 0.78 0.79 0.77 152
0.78

GB

UN 0.81 0.79 0.79 52
SS 0.80 0.78 0.77 29
TS 0.76 0.81 0.78 71

Weigh.Avg. 0.78 0.79 0.78 152
0.78

(a) RF, Hanover. (b) GB, Hanover.

(c) RF, Chicago. (d) GB, Chicago.

Figure C1. Confusion matrices of the dynamic models for the Hannover and Chicago datasets.
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Table D1. Classification results of the hybrid model.

Dataset Classifier Feature
Selection

Tuning Label Recall Precision F-Measure Accuracy Support

Hannover

RF No No

UN 0.75 0.91 0.81 68
PS 0.92 0.89 0.90 285
TS 0.88 0.89 0.88 162
W.Avg. 0.89 0.89 0.89 515

0.89

GB No No

UN 0.88 0.93 0.90 68
PS 0.94 0.93 0.93 285
TS 0.90 0.91 0.90 162
W.Avg. 0.92 0.92 0.92 515

0.92

GB Yes No

UN 0.94 0.95 0.94 68
PS 0.95 0.94 0.94 285
TS 0.92 0.93 0.93 162
W.Avg. 0.94 0.94 0.94 515

0.94

GB Yes Yes

UN 0.94 0.96 0.95 68
PS 0.95 0.94 0.94 285
TS 0.91 0.93 0.92 162
W.Avg. 0.94 0.94 0.94 515

0.94

Chicago

RF No No

UN 0.88 0.93 0.89 49
PS 0.80 0.89 0.82 29
TS 0.94 0.90 0.92 71
W.Avg. 0.89 0.91 0.89 149

0.89

GB No No

UN 0.92 0.93 0.92 49
SS 0.87 0.88 0.86 29
TS 0.91 0.93 0.92 71
W.Avg. 0.91 0.92 0.91 149

0.91

GB Yes No

UN 0.94 0.91 0.92 49
SS 0.83 0.84 0.83 29
TS 0.96 0.95 0.95 71
W.Avg. 0.93 0.92 0.92 149

0.93

GB Yes Yes

UN 0.92 0.95 0.93 49
SS 0.83 0.79 0.80 29
TS 0.97 0.95 0.96 71
W.Avg. 0.93 0.92 0.92 149

0.93

(a) Hanover. (b) Chicago.

Figure E1. Confusion matrices of hybrid model for the Hannover and Chicago datasets (Exp.4 and Exp.8 from the Table D1).
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