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Abstract. The longer the COVID-19 pandemic lasts, the
more apparent it becomes that understanding its social
drivers may be as important as understanding the virus it-
self. One such social driver is misinformation and distrust
in institutions. This is particularly interesting as the scien-
tific process is more transparent than ever before. Numer-
ous scientific teams have published datasets that cover al-
most any imaginable aspects of COVID-19 during the last
two years. However, consistently and efficiently integrat-
ing and making sense of these separate data “silos” to sci-
entists, decision makers, journalists, and more importantly
the general public remain a key challenge with important
implications for transparency. Several types of knowledge
graphs have been published to tackle this issue and to en-
able data crosswalks by providing rich contextual infor-
mation. Interestingly, none of these graphs has focused on
COVID-19 forecasts despite them acting as the underpin-
ning for decision making. In this work we motivate the
need for exposing forecasts as a knowledge graph, show-
case queries that run against the graph, and geographically
interlink forecasts with indicators of economic impacts.

Keywords. COVID-19, place and time, interoperability,
knowledge graphs, knowledge representation

1 Introduction

A pandemic such as the Spanish flu that started in 1918
is not merely an entirely different event than the ongo-
ing COVID-19 pandemic for medical and biological rea-
sons, but also due to changes in social structures, the
densely interlinked supply chains of our global economy,
and most notably in the ways in which information is com-
municated. Instead of a limited number of largely author-

itative data sources that report data occasionally, we are
bombarded with thousands of heterogeneous sources from
governments, research labs, the industry, media, and indi-
viduals, with an update frequency of minutes, not days.
Naively, one may assume that this makes for more in-
formed citizens and decision making as the transparent
process in which data are reported by many of these orga-
nizations enables the comparison of reports and forecasts.
Instead, we are facing two pandemics, a medical and a so-
cial one at the same time. There may be different reasons
for this such as distrust in authorities, fake news, misinfor-
mation campaigns, social inequality, the type of rewards
systems powering social media more broadly, and so on
(Roozenbeek et al., 2020; Cuan-Baltazar et al., 2020; Tas-
nim et al., 2020). For example, one current work warns
us that with richer countries are preparing to lift public-
health interventions, widely open the economy, and report
data less frequently thanks to the success of vaccination
campaign, there are still billions of people that are vul-
nerable to the pandemic (Mathieu, 2022). Providing open,
clean, and reliable data to the general public regarding the
COVID-19 pandemic will be a long-term mission for the
whole society.

We believe that one way to support citizens and also de-
cision makers in the industry, NGOs, and even local gov-
ernments, is to provide access to pre-integrated data that
visualize relationships across multiple COVID-19 facets
such as case loads and economic impacts. For instance, a
key argument brought up by those that questioned lock-
down at the early stage of the pandemic was the types
of places that are being forced to close while others re-
main open. Put differently, it is difficult to put together
medical, economic, governmental, and other factors in a
coherent picture. One such example is the aggregation of
California’s Central Coast with its relatively lower pop-
ulation density and lower case loads with the very heav-

10f12


https://orcid.org/0000-0002-8910-9445
https://orcid.org/0000-0002-7818-7309
https://orcid.org/0000-0001-7106-4907
https://orcid.org/0000-0001-6039-7810

ily affected and very densely populated Southern Califor-
nia region around Los Angeles. Understandably, the com-
munities that form the Central Coast rallied for the cre-
ation of a separate region as it would have allowed them
to keep their economies open (Brune, 2020). Another ex-
ample is the dozens of different forecasts with their un-
derlying assumptions such as the introduction or easing of
restrictions. To citizens and even the press, it often remains
unclear where numbers that are used to justify new mea-
sures or relax old one are taken from. One early example
comes from Germany. In the fall 2020, former Chancellor
Angela Merkel urged the public to return to stricter mea-
sures as “coronavirus infection rate could hit 19,200 per
day in Germany if the current trend continues” (Michelle,
2020). This statement was met with wide-spread criticism
even from the press and was called alarmist as Germans
could not imagine that numbers would climb that high. As
it turned out just weeks later, the daily cases reported in
Germany easily surpassed this estimate. A major concern
raised by the press was a lack of transparency. It took days
to find the particular forecast Chancellor Angela Merkel
was referring to in her press conference. With an ever in-
creasing number of research teams attempting to study the
spread and impacts of the COVID-19 pandemic, a compar-
ison of the models underlying these forecasts and their un-
derlying, often hidden, assumptions, e.g., the widespread
usage of vaccines, will be key to understanding the trend
of the pandemic for months or even years to come. For
the United States alone, there are 114 models published
by about 93 different teams (as of February 2022) to pre-
dict cumulative and incident deaths, as well as the number
of hospitalization'. Each of these models comes with own
assumptions, different spatial and temporal scales, and is
updated with new measures being introduced, variants be-
ing detected (e.g., Omicron BA2), and with additional vac-
cines becoming available. These models also range widely
in their overall fatality rates, at times even by a full or-
der of magnitude and as will be discussed below. Finally,
their accuracy varies substantially over time and with geo-
graphic space, i.e., across regions.

In this work, we develop a geographically-enabled knowl-
edge graph for COVID-19 forecasts and an ontology to
semantically represent the ingested data. We enrich this
graph with data collected about the various assumptions
underlying forecast models and the type of modeling they
use, e.g., Machine Learning versus Susceptible, Exposed,
Infectious, and Recovered (SEIR) models. Next, we in-
tegrate this graph with economic indicators. The entire
graph is indexed both geographically and temporally. Fi-
nally, to demonstrate the value of our work, we will
showcase several exemplary queries against the graph,
some with surprising results. The graph, ontology, testing
queries, visualizations, as well as the lifting source code
are available online’. To support full SPARQL queries

'https://zoltardata.com/project/44
Zhttps://github.com/zhurui0509/COVID-Forecast-Graph
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over the graph, we made it available as a public query end-
point?.

2 Related Work

Over the past two years, a great number of data sets has
been introduced to help understand and mitigate the global
COVID-19 pandemic from various aspects. Particularly in
the Scientific Data community4, more than 32 data de-
scriptors, analysis, or comments have been published, in-
cluding topics from government intervention and policy
(Desvars-Larrive et al., 2020; Zheng et al., 2020; Porcher,
2020; Shiraef et al., 2021), human mobility (Zheng et al.,
2020; Kang et al., 2020), biomedical studies, (Ellinger
et al., 2021; Liu et al., 2021; He et al., 2020; Desai et al.,
2020), and those on psychology impacts (Yamada et al.,
2021; Mondino et al., 2020; Sugaya et al., 2020; Bailon
et al., 2020). However, despite its importance in decision-
making, few data sets are available that describe forecast
of COVID-19 spread, not to mention its cross-walks with
economic indicators, census data, and so on. Meanwhile,
several teams have developed knowledge graphs (Hogan
et al., 2020) to give access to pre-integrated data related to
COVID-19, such as case loads, impacts on transportation,
scientific literature, and drug repurposing (Michel et al.,
2020; Wang et al., 2020; Domingo-Fernandez et al., 2020).
These graphs aim at establishing an ecosystem of data that
involves multiple disciplines so that a single piece of in-
formation can be timely enriched by data from other disci-
plines following FAIR principle (i.e., findable, accessible,
interoperable, and reusable). Interestingly, none of these
knowledge graphs targets forecasts and their underlying
assumptions despite their key roles in decision-making.

3 Methodology

In this work, we introduce the COVID-Forecast-Graph
focusing on providing a holistic view of Web-available
forecast models about COVID-19. While some platforms
and news organizations provide a visual representation of
many of these models, they differ substantially from our
work in several regards. First, we publish the actual model
outputs, not simply visuals. Second, while these mod-
els originate from a common API that makes them Web-
available, we integrate data about the underlying assump-
tions behind these models from several resources, thereby
enriching the source data. Third, we pre-integrate the mod-
els with other types of data such as reported “ground
truth”, credit card usage in business sectors, human mobil-
ity, and employment rate through the nexus of place and
time at various scales. Based on the place and time com-
ponent, we also provide means to easily navigate between
regions. For instance, we showcase that models perform

3https://stko-roy.geog.ucsb.edu/covid
“https://www.nature.com/collections/ebaichhfhg
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best in selected states and no model outperforms all other
models geographically. Finally, by modeling forecasts and
related data using an ontology on top of the international
SOSA/SSN standards (Janowicz et al., 2019; Haller et al.,
2019) for the semantic representation of observation data,
we aim to support interoperability, machine reasoning, and
the prediction of new links on top of our graph. In this
section, we first elaborate major data sources for COVID-
Forecast-Graph, based on which design of the underlying
ontology - COVID-SO - will be discussed.

3.1 Data Source

We collect data directly from the listed repositories below.
Each of these repositories might have their own source of
collecting the raw data (e.g., through modeling, manually,
or from private companies). To be able to integrate dif-
ferent model forecasts, “ground truth” observations, and
economic indicators, we represent them all within a sen-
sor and observation framework (i.e., SOSA/SSN).

3.1.1 COVID-19 Forecast

The COVID Forecast Hub Team® establish an open-source
repository for teams to upload their forecasts (Ray et al.,
2020; Cramer et al., 2021), and meanwhile provide ser-
vices such as interactive visualizations and ensemble mod-
els to facilitate teams and the general public to explore the
data®. Thanks to them requiring consistent specifications
for all uploaded data as well as their official use by the
US Centers for Disease Control and Prevention (CDC) to
inform decision makers and the public’, we use this repos-
itory as the main seed source to build the proposed graph.
This also enables us to keep the graph up-to-date.

Each forecast has multiple targets that aim at predicting a
specific variable (e.g., cases, deaths, or hospitalizations) at
a specific time (i.e., prediction time) for a range of spatial
units (e.g., states and/or counties). The forecast is made for
1 through 20 weeks ahead of the prediction time for inci-
dent and accumulative death, O through 130 days ahead for
incident hospitalization, and 1 through 8 weeks ahead for
incident cases. In addition to a single point prediction, the
variables are represented as a distribution with 23 quan-
tiles including 19 ones from 0.05 to 0.95 with an interval
of 0.05 plus 4 extra - 0.025, 0.01, 0.90, and 0.975. Our pro-
posed ontology captures all these various pieces of infor-
mation and represents them as a knowledge graph instead
of a traditional plain tabular forms. More specifically, each
forecast model is regarded as the virtual sensor while its
prediction results, including both single point prediction
and corresponding quantiles, are represented as observa-
tions in the graph.

>https://COVID19forecasthub.org/

Shttps://github.com/reichlab/COVID19-forecast-hub

"https://www.cdc.gov/coronavirus/2019-ncov/COVID-data
/forecasting-us.html
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3.1.2 Daily Reported Cases and Deaths

To validate forecasts made by different teams using dif-
ferent methods under various assumptions, we also in-
clude daily cases and deaths reported from Johns Hop-
kins University’s Center for Systems Science and Engi-
neering (JHU CSSE)?® as the “ground truth” (Dong et al.,
2020). In contrast to COVID-19 forecasts, the cases and
deaths are represented only as point-based values rather
than a quantile distribution. These data sets have a daily
temporal resolution and cover spatial units including na-
tion, state, and county. In COVID-Forecast-Graph, we re-
gard JHU CSSE’s repository as the sensor and the reported
cases and deaths as observations.

3.1.3 Economic Data

COVID-19 has a substantial impact on both the global and
domestic economy. This impact is expected to last for sev-
eral years. In order to build connections between COVID-
19 variables, such as incident cases, with the local eco-
nomic status, we collect a range of economy-related obser-
vations from the public repository of Economic Tracker®.
These data include economic indicators such as unem-
ployment rate, credit card use, job post, human activity,
and small business revenue, which are originally collected
by individual private companies (Chetty et al., 2020). The
Opportunity Insights team made these data available to the
public in tabular forms'®. Qur work, in contrast, regards
the Economic Tracker as a virtual sensor and the economic
indicators of interest as observations so as to lift the data
into a knowledge graph that semantically interlinks across
various data sources. These observations include nations,
states, as well as counties spatial units as well as either
daily or weekly temporal resolution.

3.2 Ontology Design

To improve the interoperability and reusability of these
separate data “silos"”, we design a COVID-19 Sensor
and Observation ontology, COVID-SO, on top of the
W3C recommended Semantic Sensor Network ontol-
ogy (SSN/SOSA) and its extensions. In this section, we
first discuss key concepts and their relations defined in
SSN/SOSA, based on which the proposed COVID-SO will
be introduced next.

3.2.1 Semantic Sensor Network Ontology and its
Extensions

The Semantic Sensor Network (SSN) ontology (Haller
et al., 2019) is a W3C!" and OGC' recommenda-

8https://coronavirus.jhu.edu

*https://tracktherecovery.org/
Yhttps://github.com/OpportunityInsights/EconomicTracker
https://www.w3.org/

Phttps://www.ogc.org/
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tion/standard to represent sensors, their observations, sam-
ples, associated stimulus, and so on. The Sensor, Obser-
vation, Sample, and Actuator (SOSA) ontology (Janow-
icz et al., 2019) is the lightweight core of SSN, in which
only the core classes and their corresponding properties
are specified. SOSA has been widely applied to domains
such as remotely sensed images (Kostovska et al., 2020),
smart city (Espinoza-Arias et al., 2019), humanitarian re-
lief (Zhu et al., 2021b), the Internet of Things (Honti and
Abonyi, 2019), and environmental intelligence (Zhu et al.,
2021a). To enable modeling homogeneous collections of
observations, an extension to SSN has been introduced'?.
It uses a new collection constructor to efficiently repre-
sent observations that share common characteristics, such
as the feature-of-interest, phenomenon time, sensor, and
SO on.

3.2.2 COVID-19 Sensor and Observation Ontology

SOSA and its extension facilitate us to integrate and reuse
the cross-disciplinary and heterogeneous repositories re-
lated to the COVID-19 pandemic. Concretely, we design
a three-tier ontology, with the upper-level establishing the
relation between SOSA and COVID-19 related core con-
cepts; the middle-level specifying the relation among these
core concepts (some are reused from SOSA and some
are newly specified); and the lower-level detailing various
subclasses of the core concepts described in the middle-
level. In the following, we discuss details for each level.

3.2.3 Upper-level COVID-SO.

As illustrated in Figure 1, core components of COVID-
SO utilize elements of SOSA (orange boxes), and the
COVID-19 related concepts (red boxes) are linked to
them via rdfs:subClassOf relation so as to reuse the
inherited properties. While this level mainly supports
interoperability and provides us with the proper con-
cepts to describe regions (sosa:FeatureOfinterest),
time (time:TemporalEntity), observable properties
(sosa:ObservableProperty), etc., the specification of
each individual data source is discussed in the middle-
level ontology.

It is worth highlighting that the two properties -
sosa:resultTime and sosa:phenomenonTime - differ
in their semantics despite both describing temporal in-
formation. First, sosa:resultTime is a data type prop-
erty, which links a subject to a literal data type (e.g.,
xsd:dateTime), while sosa:phenomenonTime is an ob-
ject property, which links the subject with an object
(e.g., an instance of the time:TemporalEntity class). Se-
mantically, the sosa:resultTime is used to describe the
time when a sensor makes an observation while the
sosa:phenomenonTime records the time of the observed
phenomenon. This difference becomes particularly es-
sential when modeling forecasts, such as the COVID-

Bhttps://www.w3.org/TR/vocab-ssn-ext/
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Figure 1. Upper-level ontology of COVID-SO. The prefix of
covid-so for introduced classes (red boxes) and properties is re-
moved for brevity. Hollow arrow indicates the rdfs:subClassOf

property.

19 forecast that will be discussed below, as (according
to the specifications) the sosa:phenomenonTime is the
time of the targeted prediction, which is later than the
sosa:resultTime when the prediction is executed.

3.2.4 Middle-level COVID-SO.

SOSA, together with its extension, are designed with both
physical and virtual sensors in mind to support simula-
tions as well as forecasting (Lefrancois et al., 2016; Janow-
icz et al., 2019). As outlined above, forecasts are obser-
vations whose sosa:phenomenonTime is later in time
than the corresponding sosa:resultTime. While applying
SOSA specifically to COVID-19 related virtual sensors
(i.e., forecast models), we have to extend it in order to fit
our need of efficiently describing all aspects of the source
data. More concretely, we focus on modeling the forecast,
their underlying assumptions, reported “ground truth”, as
well as relevant economic data with the goal of intercon-
necting them, and potentially many other data sources as
well, through the consistent use of terminologies from the
COVID-SO ontology. Hence, middle-level concepts ex-
tracted from each data repository (Section 3.1) are dis-
cussed as follows.

e COVID-19 Forecast

Figure 2 depicts the ontology to represent sen-
sors and observations collected from the COVID-
19 Forecast repository (Section 3.1.1). To illustrate
it, we will use the research led by Georgia Tech
University’s DeepOubreak team (GT-DeepCOVID)'4
as an example. GT-DeepCOVID (covid-so:Project)
made a forecast (covid-so:Forecast) on 2022-02-14
(xsd:dataTime), in which there is a specific target
(covid-so:Target) that forecasts the "8 days ahead
incident hospitalization" (covid-so:TargetType) for
all US states. More specifically, this target predicts
that the average daily new hospitalization (covid-
s0:COVIDObservableProperty) in the state of South

Yhttps://deepcovid.github.io/
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Dakota (covid-so:Place) on 2022-02-22 (covid-
so:TemporalEntity) will reach 38.11 (xsd:double).
GT-DeepCOVID (covid-so:Project) makes such a
forecast (covid-so:Forecast) using a model (covid-
so:Model) built on Deep Learning method (covid-
so:Method) with an assumption that the current in-
tervention policy will remain in the place (covid-
so:Assumption). The method belongs to the fam-
ily of general Machine Learning techniques (covid-
so:MethodType). Moreover, the applied model is the
primary one (covid-so:ModelDesignation - used in
case a team has multiple models) and is reported
by Georgia Tech University (covid-so:Team) under
the Creative Common licence: CC BY 4.0 (covid-
so:License). There are multiple reported funding
agents (covid-so:Organization) for this team on this
specific project (e.g., the US National Science Foun-
dation).

Other projects and their forecasts are modeled in a
similar way. Nevertheless, it is worth noting that dif-
ferent projects might target different observable prop-
erties (e.g., daily incident cases, cumulative deaths,
and daily incident hospitalization) at different spatial
resolutions (e.g., county, state, and national level).

Our ontology also represents the uncertainty inherent
in the forecasts since most predictive models will out-
put a quantile distribution of the estimated variable
rather than a single value (see Section 3.1.1). This
is achieved by introducing a list of sub-properties
of the original sosa:hasSimpleResult property in
SOSA. For example, most predictions made from the
COVID-19 Forecast repository are represented as ei-
ther one point value or a list of 23 quantiles. There-
fore, we designed 24 sub-properties: covid-so:point
and covid-so:quantile-N, where NV is a place holder
for the value of the quantile (e.g., 0.01, 0.25, 0.4, and

‘ Method FhasMe(hadType—) MethodType ftime: } CovIDO! perty
& h g
sosausedProcedure T sosa:observedProperty
sosaphenomenonTime
‘ Project }»sosa hasMember4>< Forecast }» } Target } xsd:double
sosa:madeBySensor sosaresultTime sosal hasFeal(u reOfinterest V\ESTNQ‘

[ omeree |

[ ] e =
ashodelDesignation

hasLicense
hasAssumption ModelDesignation ‘

hasOwner-

[ [ e |[ e

T T
hasAssumptionType  hasFundingSource

| AssumptionType | | Organization |

Figure 2. COVID-19 forecast in COVID-SO. Boxes in blue
are designed to describe middle-level concepts about covid-
so:Model; Box in green is for covid-so:Method; Box in purple
is for covid-so:Target. Yellow boxes are for literal information.
The prefix covid-so is removed for brevity.

e COVID-19 Reported “Ground Truth”

The ontology for reported “ground truth” is
designed in a similar fashion. It involves four
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Place ‘

Figure 3. Reported “ground truth” in COVID-SO. The prefix
covid-so is removed for brevity.

basic  classes:  covid-so:GroundTruth, covid-
s0:COVIDObservableProperty, covid-so:Place, and
time:TemporalEntity (see Figure 3). For instance,
it can represent that the reported “ground truth”
(covid-so:GroundTruth) of the cumulative number
of death (covid-so:COVIDObservableProperty)
in Alaska (covid-so:Place) on 2021-01-15
(time:TemporalEntity) was 987.00 (xsd:double).

e COVID-19 Relevant Economic Data

Likewise, we organize the semantics of economic
data using middle-level components of COVID-
SO. Specifically, covid-so:EconomicTracker
and covid-so:EconomicStatisticsCollection  are
two types of sosa:ObservationCollection, and
covid-so:EconomicStatistics is an instance of
sosa:Observation. The reason to use observation
collection here is that those statistical observations
often share the same characteristics, such as being
collected at the same time and same region. Using a
collection can thus help reduce redundancy. Again,
taking observations from one of the economic virtual
sensors - Affinity!> - as an example, we can repre-
sent its sensors and observations as: the company
Affinity (covid-so:EconomicSensor) made a col-
lection of observations (covid-so:EconomicTracker)
on 2021-11-24 (xsd:dateTime), one of which
is about a set of economic statistics (covid-
so:EconomicStatisticsCollection) in the state of
Texas (covid-so:Place) on the date of 2021-11-07
(time:TemporalEntity). In the economic statistics
collection (covid-so:EconomicStatisticsCollection),
one is about the seasonally adjusted credit/debit
card spending in arts, entertainment, and recre-
ation relative to January 4-31, 2020 (covid-
so:EconomicObservableProperty) and its observed
value is 0.402 (xsd:double).

3.2.5 Lower-level COVID-SO.

On the lower-level COVID-SO, we introduce in-
stances that have type of the middle-level classes
(represented using the property rdf:type). This level
depends on specific data sources. Figure 5 depicts

S www.affinity.solutions
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Figure 4. Relevant economic data in COVID-SO. The prefix
covid-so is removed for brevity.

sosa:observedProperty
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five examples. First of all, both covid-so:Target and
covid-so:GroundTruth share the same set of covid-
s0:COVIDObservableProperty, which includes covid-
so:incidentDeath, covid-so:cumulativeDeath, covid-
so:incidentCase, and covid-so:incidentHospitalization.
Secondly, data about covid-so:AssumptionType and
covid-so:MethodType used in different projects are from
the categorization organized by CDC'® and we manually
match the project and method names to the ones that are
used in the COVID-19 Forecast repository. Regarding eco-
nomic data, classes in both covid-so:EconomicSensors
and covid-so:EconomicObservableProperty are obtained
from the Economic Tracker Data Dictionary'”. It is worth
noting that each of the middle-level classes (e.g., covid-
so:AssumptionType and covid-so:EconomicSensor)
provides the entry points for including future lower-level
instances and properties from new data sources.

COVIDObservableProperty. ‘ AssumptionType ‘ MethodType

rdfiype

rdtiype rdiype.

Figure 5. Ontology of lower level concepts in COVID-SO (only
five examples are shown). The prefix covid-so is removed for
brevity.

3.2.6 Place and Time as Nexuses for Cross-Walks

One core strength of the proposed COVID-SO is its ca-
pability to connect different data sources that are related
to COVID-19. Places and time periods act as nexuses for
cross-walks between and within these data sources. Fig-
ure 6 illustrates ontology fragments for both place (left)

https://github.com/cdcepi/COVID- 19-Forecasts
https://github.com/OpportunityInsights/EconomicTracker/b
lob/main/docs/oi_tracker_data_dictionary.md
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and time (right). For a place, we do not only preserve its
key identifiers such as the Federal Information Process-
ing Standards (FIPS) code and name, but also match each
place to its corresponding identifier (URL) in the Wiki-
data knowledge graph by leveraging the OWL:sameAs re-
lation. Wikidata'® is an open knowledge graph that is built
as the underlying data provider for Wikipedia. By link-
ing to Wikidata, places in our knowledge graph are en-
riched with more detailed information, such as place type
(e.g., county), geographic coordinate, population, mayor,
ruling political party, etc. So far, the graph only includes
regional administrative identifiers in the US. However, the
place concept here can be extended to other identifiers,
such as Point of Interest (POI) and hierarchical grid cells
(Shimizu et al., 2021). Place identifiers from other coun-
tries can also be incorporated into the graph to enhance
the cross-walk of COVID-19 forecast and its associated
global socioeconomic indicators. Finally, places of inter-
est in COVID-Forecast-Graph can be mainly categorized
into three hierarchical scales: county-level, state-level, as
well as national-level. Note that some forecasts only work
on a subset of spatial scales while others observe all.

With respect to temporal information, we utilize Time On-
tology in OWL — OWL-Time'® — in order to directly take
advantage of its reasoning capability. Specifically, time in
our knowledge graph can be modeled as an instance of ei-
ther time:Instant or time:Interval, both of which are sub-
class of time:TemporalEntity. In contrast to time:Interval,
which represents a duration or extent of a temporal pe-
riod, instances of time:Instant have no extent or dura-
tion. An interval’s beginning and end points are defined
as time:Instant. In COVID-Forecast-KG, if the temporal
scale of an observation is daily, we regard it as a time in-
stant; while if the data is an aggregation of observations
across a week, the time is modeled as an interval. By
reusing OWL-Time, we can easily retrieve and compare
observations with time as an index using simple queries,
which will be illustrated in the next section.

xsd:string time:instant
haskiageRIRS time:hasEnd time:hasBeginning
| Place |—nasPlaceName~> xsd:string Aime:TemporalEnsty

WikidataPlace

Figure 6. Ontology fragments for place (left) and time (right) in
COVID-SO.The prefix covid-so is removed for brevity.

time:Interval

Bhttps://www.wikidata.org/wiki/Wikidata:Main_Page
Yhttps://www.w3.org/TR/owl-time/
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4 Result and Case Study
4.1 Statistics about COVID-Forecast-Graph

At the date of submitting this paper (February 2022),
COVID-Forecast-Graph consists of 1,835 forecasts in-
volving 117 research projects that were made by 94 teams
starting on 2021-07-01. These forecasts include predic-
tions months into the future and the database is updated on
a rolling basis. We have also included 8 economic track-
ers that jointly generate about 1,002, 750 economic statis-
tics in total that are related to COVID-19. These obser-
vations are made at about 3,200 places including states
and counties in the United States in about 1,241 tem-
poral snapshots including dates and weeks. There are in
total 220,120,470 statements in COVID-Forecast-Graph.
More detailed statistics can be found in Table 1. COVID-
Forecast-Graph is updated weekly by including newly ob-
served forecasts, reported “ground truth”, and economic
statistics.

4.2 Competency Questions

One strength of the presented knowledge graph is that it
makes complex queries across models and datasets avail-
able at users’ fingertips. In this section, we discuss multi-
ple exemplary competency questions together with their
corresponding SPARQL (a standard query language for
RDF-based knowledge graphs®’) queries. These queries
result from discussions with humanitarian relief specialist
at Direct Relief, an international non-governmental orga-
nization, as well as researchers in food systems and supply
chain, and hence only reflect a small, but representative,
fraction of potential queries. These queries are also clus-
tered into four main groups based on their goals. Note that
the part inside of the bracket (i.e., [...]) can be replaced
by other instances from the same class. Plus, all discussed
exemplary queries can be found at the published Github
repository as well as the graph endpoint and can be read-
ily executed.

Group 1: Description of sensors and observations

Q1: Which projects have forecasts about [cumulative
death] for [California] on [2022-03-12]? When have
these forecasts been made? Which of them used [re-
gression analysis]?

Once a model is designed and published, it will be
used to predict the variable of interest frequently.
However, since these projects are developed by vari-
ous teams and are maintained in different approaches,
not all of them are applied for predictions at the same
frequency (e.g., once a week, twice a week, or ran-
dom). Hence, it is common to pick forecasts at a spe-
cific place and time and then observe the changes

https://www.w3.org/TR/rdf-spargl-query/
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among these forecasts only. Once users have identi-
fied a relevant project and its models, e.g., by their
past accuracy, more contextual information can be
queried via the graph such as the type of method used,
the funding resource, the geographic location of the
team behind the project and so on (see Q2 for an ex-
ample).

Q2: Which projects implement the assumption that [lo-
cal social distancing policies will be kept in place]?
Which methods do these projects utilize?

Forecast models that are developed by different re-
search projects vary in their applied assumptions and
underlying mathematical methods. Therefore, in or-
der to understand how a model works or which types
of models are more robust over time and geographic
space, obtaining knowledge about both the assump-
tions and method types becomes imperative. A model
with an assumption that the social distancing will be
lifted in the next 4 weeks or that vaccines will be dis-
tributed rapidly would not work well for states that
do not plan to enact such a policy or where roll-
out is slow. Even though many data sources have
provided metadata files, they are often stored sepa-
rately from the core data, lack a consistent format,
and are not organized in a way ready for ingestion by
downstream models or visualizations. For example,
such information often resides as unstructured text in
FAQs. This creates a significant barrier for end users
to efficiently capture the context of using a specific
model and its forecasts, putting the transparency and
trustiness of decision-makings based on these data
sources into questions. Our COVID-Forecast-Graph
addresses this challenge by allowing end users to use
just one query to answer questions such as Q2 that
requires meta-level information about a predication
(e.g., underlying model assumptions and used meth-
ods).

Group 2: Comparison between sensors and
observations

Q3: Find all predicted [cumulative death] in [Califor-
nia] on [2022-02-12], and compare them with the re-
ported [ground truth].

Given all the different forecasts, a decision-maker
might want to first figure out which model performs
best for a specific region at a given time. By doing
so, all forecasts at that place and given time have to
be found first, and then they have to be compared
with the reported “ground truth”. This process can
be achieved by running a simple query on COVID-
Forecast-Graph. Moreover, since most forecast mod-
els report both the average prediction and its quan-
tile distribution (i.e., uncertainty), we also provide
an example query to help users evaluate a model on
whether it intends to predict a relatively short interval
that includes the reported “ground truth”.
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Economic Economic Economic Temporal
Key class Project | Forecast | Target Statistics . Place P
Tracker . Statistics Entity
Collection
Number of entities | 117 1,835 12,920,792 | 9 116,448 1,265,922 | 3,200 | 1,241

Total number of statements: 221,339,868
Total number of entities: 17,217,023
Total number of properties: 62
Total number of classes: 29

Q4: Among all the [4-week ahead forecasts] of [cumula-

tive death] in [early January 2022 (i.e., before the
Omicron peak in the US)], which model performed
the best for each state across the US?

Similar to Q3, users might want to further compare
the best model across all states in the US. Since states
might have employed different policies, differ in pop-
ulation density, mobility, international connectivity,
and so on, which can be key assumption underlying
a model, we hypothesize that for different models,
their performances should be rather distinct across
states. There are many ways to evaluate a model’s
forecasting capability. In this work, we showcase one
possible solution using the inter-connected COVID-
Forecast-Graph. Specifically, we first extract the ear-
liest forecast date of each research project in January
2022, and then use the accuracy (e.g., absolute loss)
of predicting the cumulative death in the next 4 weeks
to find the “best” model for each state. Figure 7 il-
lustrates the striking results. It becomes clear that no
single model performs best and that there are geo-
graphic patterns underlying the performance of suc-
cessful models. Similar analyses can be conducted at
the spatial scale of counties, as well as on the tem-
poral dimension as the performance of a model for a
specific state might also change through time based
on ever-changing local factors such as policy, eco-
nomic status, medical resource, and so on. Please
note that these differences are substantial, i.e., the
best model for a state varies substantially from the
second best model and so on. For instance, the best
model for California is about 91 fatalities (per day)
off, the second best increases to 210, while the worst
model is about 7909 cases off (See Table 2).

Rank Model Absolute Delta
(in fatalities)
1 MIT_ISOLAT-Mixtures 91.45
MIT_CritData-GBC 210.00
3 IHME-CurveFit 219.19
34 UMich-RidgeTfReg 7908.64

Table 2. Model comparison of predicting COVID-19 cumulative
death per day in January 2022 for California, US.

Table 1. Statistics of COVID-Forecast-Graph as of 2022-02-18. Prefixes are removed from the class name for brevity.

Model
W COVIDhub-baseline
TTU-squider

5-DELPHI

W UsC-sI_kalpha
W IHME-CurveFit
B UCSD_NEU-DeepGLEAM
W MUNIARIMA
W MIT-Cassandra

Figure 7. The best forecast model to predict the cumulative death
in the next 4 weeks for each state in the US (estimated in the
month of January 2022).

QS: In which US state does the [JHUAPL-Bucky] model
perform the best (and the worst) compared with other
models on [2022-02-05]? How do the results differ
from forecasts for [2022-02-12] (another target fore-
cast date)?

For a specific model, such as the Bucky by
Johns Hopkins University Applied Physics Lab?!, a
decision-maker may wonder in which states (or coun-
ties) this model works best and where it falls short.
To answer this question, our COVID-Forecast-Graph
allows one to query and rank the performance of
JHUAPL-Bucky in comparison to all other available
models for each state at a specific target date. More
concretely, Figure 8 depicts the ranking class (e.g.,
top 10%) of JHUAPL-Bucky in the ordered list of all
available models’ performances (i.e., absolute loss) in
forecasting the cumulative death on 2022-02-05 and
2022-02-12, respectively, for each US state. For in-
stance, we observe that JHUAPL-Bucky remarkably
outperforms other available models in Mississippi for
the two selected dates with both being ranked in the
top 10% (there are about 35 available models for the
target date, so top 10% indicates that the model is
ranked in the top 4 of the ordered list of model perfor-
mances), while the model’s performance in Califor-
nia is consistently poor (i.e., ranked bottom 10%) for
both dates. Nevada shows a different picture where
JHUAPL-Bucky’s performance positions in the bot-
tom 30% on 2022-02-05 but increases to the top 30%
on 2022-02-12. In fact, running this type of analy-

' https://docs.buckymodel.com/en/latest/
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sis on several models, we are able to demonstrate a
substantial variation of model performances across
space (regions) and time, and such an analysis can
be achieved readily using SPARQL query on top of
COVID-Forecast-Graph.

2022-02-05

2022-02-12

Figure 8. Performance comparison of JHUAPL-Bucky model
across US states on 2022-02-05 and 2022-02-12.

Group 3: Integration across sensors and observations

Q6: What is the relation between [reported incident
cases] and the [time spent at retail and recreation
locations] in [New York]?

When it comes to developing policies, the spread and
socio-economic impact of COVID-19 require knowl-
edge not only about epidemiology but also from do-
mains such as human mobility, economy, as well as
local policy. Furthermore, local decision-makers and
analysts do not only need the most accurate forecast
model (see Q4) but also other essential information
such as the employment rate, small business revenue,
human activity, and credit card use in different retail
sectors. Therefore, integrating all these data sources
into one platform and providing efficient query capa-
bilities are beneficial to facilitate optimal decisions.
By querying reported incident cases together with the
time people spent (relative to time spent in January
2020) at retail and recreation locations as an ordered
time sequence for the state of New York, users can
subsequently build visualizations such as time series
(see Figure 9) to investigate the interaction of these
two variables. For example, we can observe that the
trend for visiting retail or recreation locations in New
York reaches to a relatively high level thanks to the
low incident cases in late 2021 while it dramatically
drops due to the peak of Omicron variant in January
2022. This type of analysis can potentially help re-
searchers investigate the impact of COVID-19 on the
local economy and vice verse, which might further
advance the development of new forecasting mod-
els that take into account economic indicators. It is
worth emphasizing that in contrast to traditional silo-
ed databases, integrating more repositories can be
done with ease by using COVID-Forecast-Graph as
it makes use of global identifiers and provides disam-
biguation, e.g., for places.
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Figure 9. Time series of reported incident cases and people’s
time spent at retail and recreation locations (compared to January
2020) in New York.

Q7: Which model shows the largest deviation in accu-
racy of forecasting [cumulative death] as a function
of [population density]?

In addition to economic indicators, we have also
linked census related data*’ into COVID-Forecast-
Graph. Consequently, one can explore the associa-
tion of model performances with census-based obser-
vations (e.g., population density). For instance, Fig-
ure 10 compares the correlation between model ac-
curacy in forecasting the number of cumulative death
in 2022-02-12 and the population density (at state
level) over different models. As illustrated, 34 out
of 35 models hold a positive correlation between
the model accuracy and population density, with the
model CU-scenario_low achieving the strongest cor-
relation that reaches roughly 0.40. In contrast, the
model of RobertWalraven-ESG have slightly negative
correlations with population density. This exemplary
experiment indicates that for these models that have
a strong correlation (either positively or negatively)
between model accuracy and population density, they
may consider exploring population-related effects in
order to improve their performances. Furthermore, in
an attempt to diagnose a specific model that shows a
strong correlation, one can refer to queries as shown
in Q1 and Q2 to directly retrieve the involved method
types and assumptions for deeper investigations.

5 Conclusion and Discussion

In this work we introduced the COVID-SO ontology to
model sensors and observations related to the COVID-19
pandemic (e.g., forecasts, reported daily cases and deaths,
as well as economic statistics). In order to enable in-
teroperability with other graphs, COVID-SO reuses the
SOSA ontology and its extensions that are standardized by
W3C and OGC. On top of it, we further design a middle-
level and a lower-level ontology that are specific to three
commonly used data sources for COVID-19: forecasts,
“ground truth”, and economic data. Based on COVID-
SO, we create a knowledge graph - COVID-Forecast-

Zhttps://www.census.gov/data/datasets/time-series/demo/po
pest/2010s-state-total.html
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Figure 10. Comparison of the correlation between model accu-
racy in forecasting cumulative death on 2022-02-12 and popula-
tion density across different models.

Graph - that contextualizes and enriches the aforemen-
tioned data sources so that they can be efficiently consol-
idated and queried. Several example queries demonstrate
the strengths of COVID-Forecast-Graph.

While we included selected data sources in the current
version of COVID-Forecast-Graph, the three-tier COVID-
SO ontology enables further incorporation of COVID-19
data sources. This is mainly attributed to the core compo-
nents of COVID-SO: Place and Time. We leverage com-
mon information about places and time periods from dif-
ferent data “silos” to interlink them. For example, we have
integrated Wikidata into COVID-Forecast-Graph so that
basic information, e.g., population density, elevation, cap-
ital cities, connectivity, temperature, water area, and so
on, can be readily extracted to facilitate researchers to de-
velop more regionally informed forecasting models. In ad-
dition, the study of SARS-CoV-2 genome (He et al., 2020;
Reese et al., 2020) is another main direction of COVID-
19 related research. Data sources, such as GISAID?, have
published the sequence of genes which involves infor-
mation such as where it originated, when samples were
collected, which lab detected them, and so on. COVID-
SO potentially has the capability of integrating these data
sources into COVID-Forecast-Graph so as to further em-
power COVID-19 related research with richer situational
awareness.

Apart from the science community, stakeholders like gov-
ernment agencies, industry, and NGOs can contribute to
as well as benefit from the proposed COVID-SO and
COVID-Forecast-Graph as well. For example, the interna-
tional NGO - Direct Relief?* - has distributed over 51,000
shipments of aids globally and implemented a platform for
users to track these aid recipients (Direct Relief, 2022).
However, the platform and its underlying data are not pre-
integrated with other data sources. Our approach of us-
ing a semantically-enriched graph enables seamless cross-
walks between cases, demographics, economic indicators,
and delivered relief goods.

Bhttps://www.gisaid.org/
Zhttps://www.directrelief.org/
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6 Data and Software Availability

The COVID-SO ontology, as well as the generated knowl-
edge graph - COVID-Forecast-Graph - are available at http
s://github.com/zhurui0509/COVID-Forecast-Graph. Ad-
ditionally, the graph is made available at an open SPARQL
endpoint (https://stko-roy.geog.ucsb.edu/covid) using
GraphDB?. The code to generate the graph and support
the application of the results of this study is available in
the GitHub repository as well.
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