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Abstract.
Shared electric scooters (e-scooters) have been rapidly
growing in popularity across Europe over the past three
years, which can bring various environmental and socioe-
conomic benefits. However, how to further improve the us-
age efficiency of shared e-scooters is still a major concern
for micro-mobility operators and city planners. This paper
proposes a machine learning based approach to predict the
usage efficiency of shared e-scooters using GPS-based ve-
hicle availability data. First, the usage efficiency of shared
e-scooters is measured with the indicator Time to Book-
ing at the trip level. Second, ten exploratory variables in
time and space are calculated as features for the prediction
based on the e-scooter trips and other related data. Last,
three typical machine learning methods, including logisti-
cal regression, artificial neural network and random forest
are applied to predict the usage efficiency by inputting the
features. Besides, the variable importance is evaluated by
taking the random forest model as an example. The results
show that the random forest model yields the best predic-
tion performance (accuracy = 71.2%, F1 = 78.0%), and
the variables like the hour of day and POI density present
high variable importance. The findings of this study will
be beneficial for micro-mobility operators and city plan-
ners to design policies and strategies for further improving
the usage efficiency of e-scooter sharing services.

Keywords. Micro-mobility, E-scooter sharing, Usage ef-
ficiency, Spatiotemporal analysis, Machine learning, Vehi-
cle availability data

1 Introduction

In the past few years, there has been a proliferation of
shared micro-mobility systems, especially e-scooter shar-
ing services all over the world (e.g. McKenzie, 2020;
Heumann et al., 2021). National Association of City

Transportation Officials reported that people took 136 mil-
lion trips on shared micro-mobility services in the United
States (US) in 2019, with a 60% increase from 2018 (https:
//nacto.org/shared-micromobility-2019/). Among them,
86 million trips were made with shared electric scoot-
ers (e-scooters) in 109 US cities. In Europe, more and
more micro-mobility operators are purchasing fleets of e-
scooters to be deployed in many cities. For example, the
two launched European e-scooter startups, namely TIER
in Berlin and Voi in Stockholm, have operated e-scooter
fleets in 130 and more than 70 European cities (https:
//sifted.eu/articles/escooter-market-updates/). Especially,
the convenient characteristics of e-scooter sharing ser-
vices, such as public availability, free floating, mobile
payment, accelerate the rapid dissemination of e-scooters.
These established e-scooter sharing systems allow users to
rent e-scooters via a smartphone app, which have been in-
dicated as an sustainable transport mode to support urban
mobility, mainly for short- and medium-distance travel
(e.g. Jiao and Bai, 2020; Dias et al., 2021; Hosseinzadeh
et al., 2021).

Although the introduction of e-scooter sharing services is
capable of mitigating the transportation problems of cities
and bring social and environmental benefits, the unbal-
anced usage of e-scooters in urban space has always been
one of the obstacles of fleet management and e-scooter
sharing services. In particular, one of the most important
goals of micro-mobility operators is to occupy the mar-
ket, which normally leads to an oversupply of vehicles in
the market, thereby causing a waste of resources and in-
efficient micro-mobility services. Considering the nature
of dockless e-scooter sharing service, its great flexibil-
ity is also accompanied by the challenge of unpredictable
usage patterns, such as an imbalanced distribution of e-
scooters across a city. The inefficient deployment of ve-
hicle fleet not only occupies the public urban space, but
also increases the operation and maintenance costs of ser-
vice providers. Besides, due to the limited battery capacity,
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some vehicles can rapidly become out-of-charge during
the course of the day if they are overused in quick succes-
sion (Losapio et al., 2021). It may also lower the usage ef-
ficiency of e-scooters if they are not charged on time. Fur-
thermore, as a new form of urban mobility, their sudden
appearance and rapid expansion has challenged city ad-
ministrators and micro-mobility operators in efficient fleet
management. Hence, it is urgent and necessary to inves-
tigate how to improve usage efficiency of micro-mobility
services.

In recent years, vehicle availability data that records the
GPS locations of all available vehicles (i.e., e-scooters in
this study) from service providers has attracted notable at-
tention in micro-mobility studies (e.g. Li et al., 2021; Zhu
et al., 2020; Ziedan et al., 2021), which opens an avenue
for fleet management by exploring shared micro-mobility
usage patterns (e.g. Bai and Jiao, 2020; Caspi et al., 2020;
Almannaa et al., 2021; Guo and Zhang, 2021). However,
the existing studies are focused on analyzing shared micro-
mobility usage patterns and the related influencing fac-
tors, little attention has been paid to predicting usage effi-
ciency of e-scooter sharing services using GPS-based ve-
hicle availability data.

To bridge the gap, this study aims to predict the usage ef-
ficiency of shared e-scooters to support e-scooter sharing
services with vehicle availability data by developing a ma-
chine learning (ML) based approach. First, the usage ef-
ficiency of e-scooter sharing services is measured at the
trip level based on the vehicle availability data from ser-
vice providers. Second, the exploratory variables that in-
clude the spatial and temporal characteristics of the trip
and its contextual information are used as independent
variables, whereas the usage efficiency is regarded as de-
pendent variable in terms of the indicator Time to Booking
(TtB). Third, the potential of three typical machine learn-
ing methods, namely logistical regression, artificial neu-
ral network and random forest, is explored to predict the
usage efficiency of shared e-scooters. The experiment is
conducted based on the vehicle availability data collected
in Stockholm, Sweden, which will be introduced in section
3.1.

The remainder of this paper is structured as follows. Re-
lated work regarding usage efficiency of micro-mobility
services and influencing factors of e-scooter usage are re-
viewed in section 2. Section 3 describes the data and soft-
ware availability, and the used methods for predicting us-
age efficiency of shared e-scooters in this study. The ex-
perimental results are shown in section 4. We discuss and
conclude this research in section 5.

2 Related work

2.1 Usage efficiency of micro-mobility services

The previous studies on analyzing usage efficiency of
micro-mobility services are mainly concentrated on bike-

sharing systems. For instance, Guo et al. (2017) used
turnover rate to describe the bike-sharing usage, and iden-
tified the factors that have an influence on bike-sharing us-
age. It is found that the bike-sharing usage is affected by
household bike ownership, travel time, and bike-sharing
stations location, etc. Du et al. (2019) employed usage fre-
quency to depict the usage of public bike-sharing systems,
and developed a framework to explore the spatio-temporal
usage patterns of free-floating shared bikes. It is reported
that the factors like residential area, park and green area,
and population size have a significant influence on the us-
age frequency of bike-sharing system. Gu et al. (2019) pro-
posed a heuristic bike optimization algorithm to determine
the optimal supply and distribution of bikes, thereby im-
proving the usage efficiency of the free-floating bike shar-
ing system. Wang et al. (2019) explored the bike usage
in terms of rental duration and proposed an usage bal-
ancing design for bike-sharing systems towards efficient
sharing. Li et al. (2020) measured the usage efficiency of
bike-sharing service by calculating Time to Booking for
each bike with GPS-based bike origin-destination data,
and explored how it is influenced by the built environment
and social-demographic characteristics with ordinary least
squares (OLS) regression and geographically weighted re-
gression (GWR) models. In recent studies, Li et al. (2022)
further employed Time to Booking to measure the usage
efficiency of e-scooter sharing services by conducting a
comparison study in 30 European cities.

In summary, research into the usage efficiency of e-scooter
sharing services is still limited. Nonetheless, several indi-
cators, such as usage frequency, turnover rate, rental dura-
tion, time to booking, have been used to measure the usage
efficiency of bike-sharing systems, which provide insights
on evaluating the usage efficiency of e-scooter sharing ser-
vices.

2.2 Influencing factors of e-scooter usage

Several studies have been conducted to explore the influ-
encing factors of e-scooter sharing and examine the rela-
tionships between e-scooter usage and them. For instance,
Caspi et al. (2020) explored the usage patterns of e-scooter
sharing services using the trip data in Austin, Texas over
about a six-month period. It is found that the usage of e-
scooters is related with the areas with high employment
rates and with bike infrastructure. Jiao and Bai (2020) ex-
amined the relationships between the e-scooter sharing us-
age and the surrounding environments using the shared e-
scooter trips from April 2018 to February 2019 in Austin,
TX. The results show that the factors, such as a shorter
distance to the city center, the presence of transit stations,
better street connectivity, are associated with the increased
e-scooter usage. Huo et al. (2021) investigated the effects
of the built environment on e-scooter sharing ridership us-
ing the multilevel negative binomial model based on the
trip data in five cities of US. The results indicate that the
e-scooter sharing usage is positively correlated with the
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following factors, including population density, employ-
ment density, intersection density, land use mixed entropy,
and bus stop density, etc. The study by Hosseinzadeh et al.
(2021) identified the relationship between the e-scooter
trip density and characteristics of sustainable urban de-
velopment. By applying a Generalized Additive Modeling
(GAM) approach to the e-scooter trip data in in Louisville,
Kentucky, it is found that commercial land use percent, in-
dustrial land use percent, Walk Score and Bike Score have
an influence on e-scooter trip density.

Overall, the existing studies have indicated that the urban
built environment characteristics have a remarkable influ-
ence on e-scooter sharing usage, which can aid in eval-
uating the usage efficiency of e-scooter sharing services
for fleet management. However, the research on predict-
ing the usage efficiency of shared e-scooters is still scarce.
This study aims to predict the use efficiency of shared e-
scooters based on machine learning methods, which would
support micro-mobility operator to further optimize e-
scooter sharing services.

3 Method

3.1 Data and software availability

In this study, the vehicle availability data of e-scooter shar-
ing services in Stockholm, Sweden was collected from one
micro-mobility operator that has a high market share in
Europe. The data spans from June 1st to June 30th 2021
to measure the usage efficiency of e-scooter sharing ser-
vices and further predict it with machine learning. Each
record in the data includes e-scooter id, timestamp, longi-
tude, latitude, state of charge (SOC) for battery. The SOC
is denoted by a number between 0 and 100 (%), where
100% represents the battery is fully charged.

The data processing is mainly concentrated on trip iden-
tification from vehicle availability data and trip outliers
removal. First, the trips are identified from the collected
vehicle availability data using the method in the study by
Zhao et al. (2021), which has been demonstrated to be ef-
fective in trip identification. Next, the following criteria
are adopted to remove the outliers of the e-scooter trips
based on prior knowledge and existing studies (McKen-
zie, 2020), including: (1) trip duration is longer than one
minute and less than 2 h, (2) trip distance is greater than
100 m and shorter than 15 km. Eventually, 708,974 valid
trips are obtained. As shown in Figure 1, the extracted trip
data is visualized in terms of trip ends, which are mainly
concentrated on the inner city of Stockholm.

Besides, the points of interest (POI) and road network data
in Stockholm were collected from OpenStreetMap, which
are used to calculate the exploratory variables for the pre-
diction. According to the POI categories in the study by
Zhao et al. (2017), the POIs in relation to human trips in e-
scooters are extracted. The selected POIs are divided into
seven categories, including work, shopping, dining, recre-

ation, schooling, lodging, and medical facilities, as shown
in Table 1. Three categories of roads that are suitable for
e-scooter usage are chosen, including motorways, pedes-
trian ways and residential ways. The difference between
the latter two types is that residential ways serve as an
access to housing. Besides, bus stops data and adminis-
trative division data were also collected from TRAFIK-
LAB (https://www.trafiklab.se/) and Dataportalen Stock-
holm (https://dataportalen.stockholm.se/) respectively.

Table 1. POI categories and instances

Category POI instances

Work Office, Government, Company
Shopping Shopping malls, Supermarket, Kiosk,

Convenience store, etc.
Dining Restaurant, Fast food
Recreation Museum, Art gallery, Library, Theater,

Bar, Attraction, etc.
Schooling University, School
Lodging Hotel, Guesthouse
Medical Pharmacy, Doctor, Chemist, Dentist

The whole study is conducted on a computer with
Intel(R) Core(TM) i7-4930K CPU 3.40GHz and 32.0
GB RAM, and the program is coded with Python
language. The processed data and the code are open
in GitHub (https://github.com/micromobility-research/
usage_efficiency_prediction).

3.2 Measuring usage efficiency of e-scooters

In this study, the indicator Time to Booking is employed to
measure the usage efficiency of e-scooter sharing services
at the trip level, which quantifies each idle span of shared
e-scooters. Time to booking is defined as the duration that
a vehicle is booked again after the previous trip has ended,
which has been used to evaluate the usage efficiency of
bike-sharing services (Guidon et al., 2019; Li et al., 2020).
To calculate the TtB values of e-scooters, all pairs of con-
secutive trips for each e-scooter are extracted first. Then,
given a pair of consecutive trips for one e-scooter, the TtB
can be calculated with Eq. (1).

TtB = STPrevious −ETCurrent (1)

where STPrevious represents the start time of the current
trip, and ETCurrent represents the end time of the previ-
ous trip.

From the definition of TtB, the inverse proportional rela-
tionship between usage efficiency and TtB is derived. Con-
cretely, the higher the TtB is, the lower the usage effi-
ciency is. It should be noted that it is impossible to calcu-
late the TtB for the last trip of each e-scooter during the
selected period since the related information that when the
e-scooter is booked again is not available. In addition, con-
sidering that the vehicles with potential safety hazards are
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Figure 1. Study area and the extracted trip ends.

required to be maintained by micro-mobility operators be-
fore being reused, the TtB values that exceed three days
are removed in this study. It is assumed that too long idle
parking of e-scooters normally result from their unavail-
ability in the market due to maintenance or some other
reasons.

3.3 Exploratory variables

In this study, ten exploratory variables in time and space
are selected as features to predict the usage efficiency of
shared e-scooters. The temporal variables describe the oc-
currence time and date of idle parking, which can extracted
from the identified e-scooter trips. The spatial variables de-
pict the spatial relationships between parking location of
e-scooter and its surrounding built environment, which are
calculated based on the POI data and road network data in
the study area. The variables are described as follows:

1. Start time of idle parking (Hour_day);

2. Idle parking occurred on weekday or weekend
(Day_week);

3. Battery power of trip end (End_battery);

4. Distance to the nearest motorway (Dis-
tance_motorway);

5. Distance to the nearest pedestrian way (Dis-
tance_pedestrian);

6. Distance to the nearest residential way (Dis-
tance_residential);

7. Distance to the nearest bus stop (Distance_stop);

8. Distance to the nearest POI (Distance_POI);

9. Density of POIs in the corresponding administrative
division unit (Density_POI);

10. Density of bus stops in the corresponding administra-
tive division unit (Density_stop);

Table 2 displays the description of the features. The
first three categorical variables are calculated based on
the trips. The five distance-based variables are calculated
based on the collected road network, bus stops and POIs
dataset. The two density-based variables are obtained the
density of POIs and bus stops in the corresponding admin-
istrative division unit by overlaying the trips ends with the
administrative division map.

3.4 Machine learning method

In this study, we select three typical machine learning
methods to implement the prediction of e-scooter shar-
ing usage efficiency, including logistic regression (LR),
artificial neural network (ANN) and random forest (RF).
These ML methods have been widely used to GIS and ur-
ban transportation studies (e.g. Aditian et al., 2018; Pun
et al., 2019; Bucher et al., 2020).
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Table 2. Type and value of each feature.

Feature Type Value

Hour_day Categorical [0, 1, ..., 23]
Day_week Categorical [1, 2, ..., 7]
End_battery Categorical [1%, 2%, ..., 100%]
Distance_motorway Continuous [0, ∞]
Distance_pedestrian Continuous [0, ∞]
Distance_residential Continuous [0, ∞]
Distance_stop Continuous [0, ∞]
Distance_POI Continuous [0, ∞]
Density_POI Continuous [0, ∞]
Density_stop Continuous [0, ∞]

3.4.1 Logistic regression

Logistic regression transforms the input variables into the
probability of an output variable using the logistic sig-
moid function, which is a simple and efficient method
for classification problems, especially binary classifica-
tion (Menard, 2002). The output value is interpreted as the
probability of an instance belonging to a particular class.
In binary classification, logistic regression applies a logis-
tic function to model a binary output variable. Unlike lin-
ear regression, the output range of logistic regression is
bounded between 0 and 1 due to the introduction of sig-
moid function. Additionally, as opposed to linear regres-
sion, a linear relationship between inputs and output vari-
ables is not required for logistic regression. The Python
library Scikit-learn provides an API to implement the lo-
gistic regression.

3.4.2 Artificial neural network

Inspired by the information processing of biological neu-
ral networks in human brain, artificial neural network is
comprised of a densely interconnected set of artificial neu-
rons, where each neuron takes a number of real-valued
inputs and produces real-valued output (Mitchell, 1997).
The neuron (also called node) is the basic unit of compu-
tation in a neural network, which receives input from other
neurons, or from an external data source and produces an
output. Multiple neurons are capable of forming different
networks, among which the feedforward neural network
is the simplest type of artificial neural network. A feed-
forward neural network normally contains three types of
layers, namely an input layer, a hidden layer and an output
layer. Neurons from adjacent layers have weighted con-
nections between them.

A typical example of a feedforward network with one
or multiple hidden layers is called multilayer perceptron
(MLP). Given a set of features X and an array of labels,
the MLP is capable of learning the relationship between
the features and the labels for classification. The important
hyperparameters of the MLP are the number of hidden lay-
ers and the number of neurons in each hidden layer, which

can be represented as a tuple (hidden_layer, sizes), the
penalty parameter for regularization alpha as well as the
learning rate.

3.4.3 Random forest

Random forest (RF) is a tree-based ensemble classifier,
which constructs multiple decision trees to make pre-
dictions and performs voting for the predicted results
(Breiman, 2001). The trees are generated by drawing a set
of training samples with a bagging approach. Each tree
depends on an independent random sample. For each de-
cision tree in the forest, each node is split using a prede-
termined number of features randomly selected, which is
different from traditional decision trees where the ‘best’
feature is used. Ultimately, the forest is created by grow-
ing the decision trees up to a user-defined number. In the
case of classification, each tree votes and the membership
class with the most votes is chosen as the final prediction.
Hence, it is actually an extension over bagging.

As mentioned above, two hyperparameters normally re-
quire to be optimized in order to increase the predictive
power of the random forest classifier, namely the number
of decision trees (n_trees) and the number of features to
be selected for the best split (max_features). In addi-
tion, two other hyperparameters, the minimum number of
samples at a leaf node (min_samples_leaf ) and the min-
imum number of samples used to split an internal node
(min_samples_split), will also be tuned.

3.5 Performance evaluation metrics

In this paper, four metrics are employed to evaluate the
performance of the classifiers, including accuracy, F1
score, precision and recall. The four measures are calcu-
lated based on the following terms, namely True Positive
(TP), False Positive (FP), True Negative (TN) and False
Negative (FN), which are commonly used in binary clas-
sification problem (Robert, 2014).

1. True Positive (TP) is data sample classified as posi-
tive by the model that actually is positive.

2. False Positive (FP) is data sample the model recog-
nizes as positive that actually is negative.

3. True Negative (TN) is data sample classified as nega-
tive by the model that actually is negative.

4. False Negative (FN) is data sample the model recog-
nizes as negative that actually is positive.

Accuracy is the ratio of number of correct predictions con-
ducted by the model over number of all kinds of predic-
tions in classification problems, which is defined as:

Accuracy =
TP +TN

TP +FP +TN +FN
(2)
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Precision refers to the number of TPs divided by the sum
of the number of TPs and the number of FPs, which be
denoted by:

Precision=
TP

TP +FP
(3)

Recall (also called true positive rate or sensitivity) is the
number of TPs divided by the sum of the number of TPs
and the number of FNs, which can be expressed as:

Recall =
TP

TP +FN
(4)

F1 score is a way of combining the precision and recall of
ML model, which is defined as:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5)

3.6 Feature importance

Explainable artificial intelligence has been attracting more
attention in recent years, which can provide more trans-
parency to the ML algorithms and help people understand
the cause of decision behind a model (Miller, 2019). Fea-
ture importance technique is capable of quantifying how
useful the input features are at predicting a target variable
by assigning a score to them, which is very important in
feature engineering and interpretability of machine learn-
ing models. In the previous studies, different approaches
have been proposed to evaluate the feature importance for
different models (e.g. Olden et al., 2004; Strobl et al.,
2007; Gregorutti et al., 2017; Williamson et al., 2021).

In this study, permutation-based variable accuracy impor-
tance (PVAI), as a commonly used method, is employed
to assess the importance of input feature for the machine
learning models. The rationale of the method is that the
importance of a feature is measured by the increase in the
prediction error of the ML model after the values of the
feature are randomly permuted. If the prediction perfor-
mance (e.g., accuracy) decreases more under the permu-
tation of a feature, it implies that the feature has a higher
importance (Breiman, 2001).

4 Experimental results

4.1 Usage efficiency analysis

In this section, the usage efficiency patterns of e-scooter
sharing services are explored in time and space. According
to Eq. (1), given a pair of consecutive trips, the TtB can
be calculated. Since the TtB value for the last trip of each
e-scooter during the selected period is not able to calcu-
late, those trips are removed after calculating TtB values.
Eventually, 702,138 trips with TtB are preserved for the
experiment.

First, the statistical analysis is conducted by examining the
probability distribution and cumulative probability distri-
bution of TtB based on the trips. As shown in Figure 2,
it can be observed that the idle parking less than one hour
and greater than 8 hour occupies 45% and 20% respec-
tively. It implies that there is a certain potential to fur-
ther improve the usage efficiency of the shared e-scooters.
In addition, we further calculate the mean and median of
TtB, which are 326 min and 70 min respectively.

Figure 2. Probability distribution and cumulative probability dis-
tribution of Time to Booking.

Second, the temporal analysis is conducted to explore how
the TtB varies over time. In this study, the entire idle park-
ing is aggregated on hourly basis to describe the varia-
tions of TtB on weekday and weekend, as shown in Fig-
ure 3. It can be observed that the usage efficiency of the
shared e-scooters presents the similar patterns on week-
day and weekend. For example, the shared e-scooters dis-
play high usage efficiency (i.e., low TtB) during daytime
(from 8:00-17:00) irrespective of weekday or weekend.
However, the fluctuations of the usage efficiency are more
pronounced in the nighttime, which is consistent with hu-
man travel behavior patterns.

Figure 3. Temporal variations of Time to Booking on hourly ba-
sis on weekday and weekend.

Next, we further analyze how the usage efficiency of the
shared e-scooters varies in space on weekday and week-
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end. Figure 4 visualizes the spatial distributions on the us-
age efficiency in terms of TtB on weekday and weekend.
Here, the median of TtB in each administrative division
unit is calculated and employed to quantify the usage effi-
ciency of e-scooter sharing services in different areas. The
green color represents lower TtB (i.e., higher usage effi-
ciency) while blue color represents higher TtB (i.e., lower
usage efficiency). Grey color indicates that there is no data
(or trips by e-scooter sharing service). By comparing the
spatial variations of TtB on weekday and weekend, we
can conclude that the areas with high usage efficiency of
e-scooter sharing services are mainly concentrated on city
center of Stockholm on both weekday and weekend. The
areas with low usage efficiency are distributed in the pe-
riphery. One interesting finding is that the medians of TtB
in some downtown areas exceed two hours. This is because
the main city of Stockholm is connected by 14 islands and
a peninsula through more than 70 bridges. The e-scooter
sharing services do not display high usage efficiency in
several islands of city center.

Figure 4. Spatial variations of Time to Booking on (a )weekday
and (b) weekend.

4.2 Usage efficiency prediction

In this section, the above-mentioned three typical ML
methods are used to predict the usage efficiency of shared
e-scooters. According to the cumulative probability distri-
bution of Time to booking in Figure 2, it is reported that
the idle parking less than 2 hour occupies 60% of the entire
idle parking of shared e-scooters. Here, we choose 2 hour
as threshold to divide the whole idle parking of shared e-
scooters into two parts, namely high usage efficiency and
low usage efficiency. In this situation, the usage efficiency
prediction is transformed into a binary classification prob-
lem. In this study, the idling parking with high usage effi-
ciency belongs to class 1 (positive), and the idling parking
with low usage efficiency belongs to class 0 (negative).

First, the whole dataset including high usage efficiency
and low usage efficiency of idling parking is randomly
split into 491,496 training data instances (70%) and
210,642 test data instances (30%). In the training and test
data, the ratios of high usage efficiency instances to low
usage efficiency instances are both 1:1.5. Second, grid
search with 5-fold cross-validation is conducted to tune
the hyperparameters of each classifier using training data.
Moreover, the same training and test data are used in all
the three models to make the performance evaluation re-
sults comparable. Figure 5 presents the prediction perfor-
mance of the ML models in terms of the four evaluation
metrics.

As shown in Figure 5, regarding the prediction perfor-
mance in terms of accuracy and F1 score, the RF model
yields the best performance (accuracy = 71.2%, F1 =
78.0%), which is closely followed by the ANN model (ac-
curacy = 69.0%, F1 = 77.0%), and then followed by the LR
model (accuracy = 63.2%, F1 = 74.5%). It is found that the
selected ML models are capable of predicting the usage ef-
ficiency of shared e-scooters well. Concerning precision,
the RF model also achieves the highest performance (pre-
cision = 72.8%), which is followed by the ANN model
(precision = 69.8%) and then the LR model (precision =
64.1%). Taking the RF model as example, it implies that
27.2% of the predicted idling parking of high usage effi-
ciency stems from the misclassification of the idling park-
ing with low usage efficiency. It should be noted that, in
terms of recall, the best prediction performance is achieved
by the LR model (recall = 89.0%), followed by the ANN
model (recall = 85.9%) and the RF model (recall = 83.8%).
This is because the LR model obtains the lowest false-
negative. In combination with the relatively low prediction
accuracy of the LR model, it can be concluded that the LR
model has a relatively poor prediction on the low usage
efficiency instances compared with the RF model and the
ANN model.

In summary, the selected three ML methods achieve the
satisfying performance on the prediction of e-scooter shar-
ing services at the trip level. Among them, random forest
displays the best prediction performance
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Figure 5. The prediction performance of the three employed ML
methods in terms of the evaluation measures.

4.3 Variable importance analysis

In this work, the PVAI method introduced in section 3.6 is
implemented to measure the importance of the ten vari-
ables/features. Specifically, each feature is permuted 10
times in the test data. The importance is measured by the
reduction in accuracy. We here present the variable impor-
tance analysis result by taking the random forest model as
an example.

Figure 6 presents the importance of each feature with box-
plot. It is found that the hour of day has the highest fea-
ture importance in the RF model, which is supported by
the findings in Figure 3. From Figure 3, it is found that
the shared e-scooters display different usage efficiencies in
terms of Time to Booking. Next, POI density is displayed
as the second important features in the RF model. POI
density describes the intensity of the spatial distribution of
POIs in an area, which is positively associated with pedes-
trian activity intensity. Since the usage efficiency of shared
e-scooters relies heavily on their surrounding pedestrian
activities, it explains why POI density presents high fea-
ture importance. It should be noted that battery power of
trip end is also displayed as an important feature in the
RF model. Compared with the above-mentioned three fea-
tures, other features have low importance values.

5 Conclusion and future work

The introduction of e-scooter sharing services to cities re-
sults in significant environmental and socioeconomic ben-
efits, while some existing related issues still require to be
solved. Due to the flexibility nature of shared e-scooters,
how to further improve the usage efficiency of e-scooter
sharing services has always been one of the main concerns
of micro-mobility operators and transport planners. The
emergence of GPS-based vehicle availability data provides
the possibility to investigate the usage efficiency of shared
e-scooters at a high spatial and temporal resolution. In ad-

Figure 6. Feature importance in the Random forest model.

dition, machine learning has been demonstrated its useful-
ness in the fields of GIS and transportation. Driven by the
goal of urban sustainable urban mobility, we investigate
the prediction on the usage efficiency of shared e-scooters
based on the GPS-based vehicle availability data and ma-
chine learning models in this study. The main findings of
this study are summarized as follows.

First, the vehicle availability data collected from a micro-
mobility operator is employed to measure the usage effi-
ciency of e-scooter sharing services in Stockholm in terms
of Time to Booking. The temporal and spatial analysis re-
sults suggest that the usage efficiency of shared e-scooters
has notable variable patterns over time and space. Sec-
ond, three typical machine learning models, including lo-
gistic regression, artificial neural network and random for-
est, are used to predict the usage efficiency of shared e-
scooters based on the extracted ten variables. With re-
gards to the evaluation metrics, the random forest model
achieves the best prediction performance. Last, the vari-
able importance analysis is implemented based on the ran-
dom forest model. The results show that three features,
including hour of day, POI density, battery power of trip
end, present high importance compared with other fea-
tures. This study has important implications with respect
to further optimize e-scooter sharing services by micro-
mobility operators.

However, there are several limitations in the current study,
which could be considered as directions for future work.
First, the current features only consist of several basic vari-
ables in time and space. Some socioeconomic and weather
variables require to be taken into account, which have a
potential to further improve the prediction performance
of the machine learning models. Second, only the feature
importance analysis is implemented to improve the inter-
pretability of machine learning models. It would be more
meaningful to attempt some more interpretability analy-
sis techniques of machine learning, such as partial de-
pendence plots, feature interaction. Last but not least, this
study divides the usage efficiency of shared e-scooters into
high and low categories by setting a threshold two hour
according to the statistical distribution of TtB. It would be
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more realistic to take the prediction of TtB as a regres-
sion problem to meet the various requirements of micro-
mobility operators.
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