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Abstract. Point clouds data provides new potentials for
automated construction of more geometrically accurate
and semantically rich 3D models for indoor environments.
Recent advances in deep learning methods on point cloud
semantic segmentation demonstrated impressive accuracy
in labeling points of 3D surfaces with object classes. How-
ever, it remains challenging to reconstruct the shape of se-
mantic objects from semantically-labeled 3D points, due
to imperfection of such data and the under-determination
of object construction algorithms. We have little empir-
ical knowledge about how data imperfections affect the
reconstruction of 3D indoor room objects. This paper
contributes to understanding the nature of such imper-
fection of 3D point cloud data and semantic segmenta-
tion algorithms by analyzing the reconstructability of in-
door room objects from semantically-labeled point cloud.
181 rooms from Stanford Large-Scale 3D Indoor Spaces
Dataset (S3DIS) were used in our experiment. After gen-
erating semantic labels on point-clouds using PointNet++
segmentic segmentation algorithm, we use human coders
to judge the reconstructability of indoor objects, following
a qualitative coding scheme. Human exploration of object
shape imperfection was assisted by a visual analytic tool
in making their judgement. We found that high point-level
accuracy achieved through semantic segmentation of point
cloud data does not guarantee high object-level accuracy.
The extent of this problem varies widely among different
spatial settings and configurations. We discuss the signifi-
cance of these findings on the choice of 3D reconstruction
methods.

Keywords. 3D Models; indoor environment; 3D recon-
struction; point clouds processing

1 Introduction

Indoor spaces support majority of human activities (Wor-
boys, 2011). Studies show that the average person spends
around 90% of their time indoors (Klepeis et al., 2001).

With rapid urbanization, large indoor spaces (such as high-
rise business complex, public buildings, airports, and train
stations) are increasingly used to provide services and in-
frastructures (Kang and Li, 2017). These indoor environ-
ments are increasingly complex and difficult to navigate,
manage, and use. Therefore, accurate three-dimensional
(3D) models for such indoor spaces are of profound im-
portance for a wide range of applications, such as con-
struction, indoor navigation and real estate management
(Zlatanova et al., 2013; Lehtola et al., 2017).

The construction of 3D models of indoor environments
still poses mounting challenges due to the complicated
layout of the indoor structure, and the complex inter-
actions between objects, clutter, and occlusions (Naseer
et al., 2019; Zlatanova et al., 2013). When indoor space
is large and complex, models typically incorporate some
levels of subdivisions to reflect the hierarchical structure
of the physical, functional, and social space (Richter et al.,
2011). For example, a shopping mall has a number of
stores, warehouses, control rooms, cinemas, sports cen-
ters, subway stations, etc., each of which has unique re-
quirements and functions. Indoor 3D model specifications,
such as IndoorGML (Kang and Li, 2017), typically repre-
sent indoor space subdivisions that are composed of rooms
(or cells) connected by corridors. Rooms are themselves
complex structures, commonly surrounded by architec-
tural components (such as walls, ceilings and floors) and
could be populated by doors, windows, and furniture (e.g.,
chairs, tables, lamps, computers, cabinets) (Lorenz et al.,
2006; Becker et al., 2009). Basic elements in a room have
strong mutual relationships with known priors (e.g., a chair
stands on the floor, a monitor rests on the table).

3D models for indoor environment could be derived from
many sources, such as photogremmetry, survey, BIM, 2D
imagery, and modern 3D sensors and scanners (Zlatanova
and Isikdag, 2017). In particular, 3D Point cloud data de-
rived from 3D sensors provides rich geometric, shape and
scale information, and can be used to estimate the surface
geometry and material composition of the reflecting sur-
face. Point cloud represents objects in space by collating
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a large number of single point measurements. Each point
represents a single laser scan measurement ( in {X, Y, Z}
geometric coordinates) on an sampled surface of a spatial
object. With these data sources, 3D models can be derived
through a series of processes, commonly known as 3D re-
construction (Berger et al., 2017; Chen and Clarke, 2020).
The ultimate goal of 3D reconstruction is to characterize
object’s location, geometries, semantics, and their spatial
arrangement and relationships. The fundamental tasks are
the discovery of structural elements, such as rooms, walls,
doors, and indoor objects, and their combination in a con-
sistent structured 3D shape and semantics (Pintore et al.,
2020).

The major challenge of solving the reconstruction prob-
lem using 3D point cloud data is that inferring the geo-
metric shape of an objects from sampled 3D points (point
cloud representation) is ill-posed. Pintore et al (Pintore
et al., 2020) showed that an infinite number of 3D sur-
faces may fit a 3D point cloud scan of a surface due to
the under-sampled or partially missing data. For this rea-
son, existing 3D object construction algorithms all rely on
some form of pre-defined knowledge priors to restrict the
candidate matching and to make reconstruction tractable
(Berger et al., 2017). The knowledge priors may come
from architectural principles (such as rooms are bounded
by walls, floor and ceiling) or functional principles (such
as chairs are typically next to tables). This approach was
only partially successful due to the complexity and vari-
ability of interior environments. The effectiveness of these
methods vary significantly in dealing with imperfection of
point cloud data, such as noisy data, missing data, non-
uniform sampling, and outliers Kang et al. (2020). This
results in several dozens of 3D object reconstruction al-
gorithms, each was optimized on very specific expected
indoor structures and objects, or to combat specific types
of imperfections in the point cloud representation. Users
of these algorithms face difficulties in choosing the ’right’
algorithms when facing new situations. Therefore, it is im-
portant that we develop good understanding of the nature
of the imperfections of the data. Further more, we have
little empirical knowledge about how data imperfections
affect the reconstruction of 3D room objects.

This paper contributes to the above knowledge gap by
offering insights to the nature of imperfection of point
cloud data from the perspective of 3D reconstruction.
We explored the imperfections of a semantically-labeled
point cloud datasets derived from semantic segmentation
of Stanford 3D Indoor Space Dataset (S3DIS), and as-
sessed the reconstructability of indoor objects using hu-
man coders who were assisted by a visual analytic tool
in making their judgement. We found that high point-level
accuracy achieved through semantic segmentation of point
cloud data does not guarantee high object-level accuracy.
The extent of this problem varies widely among different
spatial settings and configurations and is also sensitive to
the hyperparameters of semantic segmentation algorithms.

We discuss the significance of these findings on the choice
of 3D reconstruction methods.

2 Related work

The automated reconstruction of 3D models from 3D point
cloud data has been one of the central topics in computer
graphics and computer vision for decades (Pintore et al.,
2020). A subfield of this domain concerns with automatic
reconstruction of indoor environments, which derives a 3D
representation of an interior scene from 3D scan data. In-
door objects in the context of this study include not only
architectural (fixed) elements (walls, floors, ceilings) but
also movable objects of room interiors (furniture, win-
dows, doors, boards, etc). Indoor 3D reconstruction is the
process by which a 3D indoor objects are inferred, or ‘re-
constructed’, from a collection of discrete points that sam-
ple the shape (Berger et al., 2017). Indoor objects (such as
furniture) are considered as integral part of the indoor en-
vironment. The occurrence and arrangement of indoor ob-
jects in room interior offer important clues to understand
the purpose and functions of indoor environments (Zhang
et al.).

Most indoor object reconstruction methods have focused
on finding the geometric shapes of architectural ele-
ments that bound the interior of rooms (Ochmann et al.,
2016, 2019; Shi et al., 2019; Macher et al., 2017; Kang
et al., 2020). They typically start with detection of primi-
tive geometric features (such as planes, lines, and corners)
and then compose them into cuboids, using adjacency re-
lationships and Manhattan-World (MW) prior. Room inte-
rior objects are harder to reconstruct due to the need for
detailed surface representations, complex shapes, and oc-
clusion. To overcome this problem, room objects recon-
struction typically leverage semantic information to con-
struct geometries. Figure 1 shows the generic workflow of
3D reconstruction process that derive shape and semantic
representation of room objects from point cloud represen-
tation. It shows that the input to the object reconstruction
algorithm is the semantically-labeled point cloud (SLPC)
representation of room interiors, which is generated from
the process of semantic segmentation on point clouds. This
will allow the reconstruction of object shapes to exploit
data-driven priors in the form of a collection of known
shapes (e.g. a shape library of different furniture objects)
(Li et al., 2015; Nan et al., 2012). Using SLPC as input, an
object reconstruction algorithm will try to grow surfaces
using clusters of points with similar object labels and use
these partially constructed surfaces to match shapes of the
same object class. The performance of object reconstruc-
tion algorithm is determined by three factors:

(1) The quality of surface reconstruction algorithms. Sub-
stantial progress has been made in 3D surface recon-
struction methods. Berger et al. (2017) reviewed thirty-
two point cloud modelling methods where they identified
the knowledge priors of each algorithm explicitly. They
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Figure 1. Workflow of room objects 3D reconstruction from point cloud

showed that the effectiveness of these methods vary sig-
nificantly in dealing with imperfection of point cloud data,
such as noisy data, missing data, non-uniform sampling,
and outliers. So far, there is no method that is generally
good fit to all situations, and each of the methods was de-
signed to deal with specific type of objects and imperfec-
tions.

(2) The quality of shape library. Significant efforts have
been invested in building shape libraries for various ap-
plications, together with methods of approximate shape
matching and retrieval (Xie et al., 2017). Such shape
matching can be mediated by the use of domain-specific
ontology of objects shape, parts and relationships (Poux
et al., 2018).

(3) The quality of input data. As shown in Figure 1, the
input data to the object reconstruction is the semantically-
labeled point cloud (SLPC) representation of room inte-
riors ((box 3 ). This representation is typically generated
by supervised machine learning methods that are designed
to infer the object class on each 3D point (also known as
semantic segmentation)(Xie et al., 2020). The process of
matching point cloud representation with shape priors is
vulnerable to various imperfections of point cloud data.
Berger et al Berger et al. (2017) reviewed five commonly
known point cloud artefacts (non-uniform sampling den-
sity, missing data, noise, outliers, and misalignment) and
discussed how they impact the fidelity of reconstructed
surfaces. However, we know very little on the imperfection
of semantically-labeled point cloud (SLPC) representation
in relation to 3D indoor object reconstruction.

Our work contributes to filling the knowledge gap iden-
tified above (in(3)) by exploring the imperfections of
SLPC representation that is produced by automated se-
mantic segmentation methods. We use the following re-
search questions to guide our exploration:

Question 1 What are the error and confusions in the se-
mantic labels generated by automated semantic seg-
mentation methods? Existing work on semantic seg-
mentation of indoor scenes only reported average
point-level accuracy for the whole dataset, and have
never explored where and why errors occurred. In
this paper, we explored the accuracy and confusion
measures of semantic labels for commonly encoun-
tered room object classes (furniture, doors, windows,
boards, etc) and offer some insights on how accuracy
varies among different object classes (see Section 3).

Question 2 Can 3D object shapes be reconstructed from
semantically labeled point cloud representation? We
answer this question by comparing human coding of
object geometry quality with the semantic label ac-
curacy (see Section 4). We demonstrated that high
point-level accuracy of point labels does not guaran-
tee shape reconstructability in object-level geometry.

3 Assessing Imperfections of Semantic Segmentation

The work of this section is to address research question
1. Given a point cloud representation of an indoor scene,
the goal of semantic segmentation is to separate a point
cloud into several subsets according to their semantic ob-
ject categories (tables, chairs, doors.etc). With the avail-
ability of multiple semantically annotated 3D point cloud
datasets for indoor environment ((Armeni et al., 2016; Dai
et al., 2017)), supervised machine learning models based
on deep learning architecture have achieved superior per-
formance over other methods Guo et al. (2020). The key
advantage of deep learning methods is that it does not re-
quire human-guided design of discrimination features in
segmentation tasks. Based on recent survey of automated
semantic segmentation techniques (Xie et al., 2020; Guo
et al., 2020; Liang and Fu, 2019; Li et al., 2018), Point-
Net++ Qi et al. (2017) and its close variants are the latest
and best performing network structures for 3D semantic
segmentation on point cloud. Since PointNet++ represents
the state-of-the-art semantic segmentation algorithms for
indoor objects, we will use PointNet++ as the proxies of
the best semantic labeling methods on 3D points.

Our subsequent experiments use PointNet++ Qi et al.
(2017) as the semantic segmentation algorithm to observe
the imperfections caused by the algorithmic artefacts. To
better understand the algorithmic artefacts associated with
PointNet++, we will briefly review the principles of Point-
Net++ and its associated algorithmic artefacts, followed
by an experimental studies for understanding the imper-
fection.

3.1 PointNet++: Semantic Segmentation on Point
Cloud

PointNet++ Qi et al. (2017) is a hierarchical neural net-
work which process a set of 3D points sampled in a metric
space. Figure 2 illustrates the architecture of PointNet++
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framework. It consists of a "Hierarchical Point Set Feature
Learning" phase and a "segmentation" phase. During hi-
erarchical feature learning, multiple levels of abstraction
form a hierarchy to pool features towards more compact
and abstract feature representation. During segmentation,
a hierarchical point feature propagation coupled with dis-
tance based interpolation to derive semantic label for all
the points.

Figure 2. PointNet++ framework Qi et al. (2017)

The imperfections of object class labels generated by
PointNet++ model can be understood from the way that
PointNet++ constructs the feature space in the learning
model. This can be summarized into the following key
ideas:

• It partitions the set of points into overlapping lo-
cal regions by the distance metric of the underlying
space. It uses the point sphere model around a set of
centroids to define local regions.

• It extracts local features capturing fine geometric
structures from small neighborhoods. This is done
by a mini-PointNet - a multi-layer perceptron (MLP)
network.

• Such local features are further grouped into larger
units and processed to produce higher level features.
PointNet++ uses MSG (Multi-Scale Grouping) to ex-
tract the local features at each radius and combines
them together and use MRG (multi-resolution group-
ing) to combine the global features of different lay-
ers. This process is repeated until the features of the
whole point set is obtained.

PointNet++ has multiple algorithmic artefacts that could
contribute to the imperfection of object class labels on
points.

As PointNet++ method of semantic segmentation is heav-
ily data-driven, some parameters were made adjustable for
the detection and recognition of objects of different shapes
and sizes. Any applications of PointNet++ method on in-
door object semantic segmentation will face a number of
decisions to make related to the choices of parameters that
can be tuned by the modeler to avoid the worst perfor-
mance and achieve the best possible outcome.

By analyzing the source code and algorithms of Point-
Net++, we have identified a number of parameter set-
tings that users may adjust to maximize the performance

of semantic segmentation on a specific dataset. In the
pre-processing step, the raw data was chunked (to cubes
defined by 1.5m-1.5m square of floor areas) and down-
sampled (using random sample 8192 points) which sat-
isfied the data quality without losing information. Then,
then 1024 local regions are defined on each cube, where
the centroid of those local regions are determined by fur-
thest point sampling (FPS) and a radius. These parameters
are given in Table 1.

Table 1. Parameters and default settings in PointNet++.

Para Explanation Default
Sc The size of the floor square used to

chunk the raw data
1.5m x
1.5m

Ns The number of points to down-sample
raw data

8192

R Radius of the spheres that define local
regions around centroids

0.1

K Number of of points sampled from each
local region

1024

The success in extracting local features depends on proper
setting of the above parametersZhang et al. (2020). Due
to the entanglement of feature scale and non-uniformity of
input point set, the choice of these above parameters could
lead to failure in searching local features. This is a source
of imperfection in semantic segmentation. To understand
the effect of such model artefacts on the imperfection of
the semantic segmentation outcome, we conducted the fol-
lowing experiment.

3.2 Experiment 1: Comparing Imperfections Across
Object Classes

We conducted an experiment to understand the extent to
which PointNet++ semantic segmentation algorithm con-
tributes to the imperfection of object class labels for in-
door room objects. To do so, we replicated PointNet++
semantic segmentation algorithm exactly as was done in
the original paper Qi et al. (2017). The purpose is to un-
derstand imperfection in terms of accuracy and confusion
rates.

System design. We followed the original design of Point-
Net++ semantic scene labeling 1, which uses 4 set of ab-
stractions. The four layers have 1024, 256, 64, 16 nodes,
respectively. All parameters settings in the source code
were unchanged.

Dataset description and preprocessing. To verify the
ability of the adopted approach to achieve more semantic
and acceptable results for indoor 3D modeling, we used
a publicly available dataset, Stanford Large-Scale 3D In-
door Spaces Dataset (S3DIS) Armeni et al. (2016) to train
and test a PointNet++ semantic segmentation model. The
dataset contains 3D scans from Matterport scanners in 6

1https://github.com/charlesq34/pointnet2
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areas including 272 rooms (see Figure 3). Each point in
the scan has been annotated with one of the semantic la-
bels from 13 categories (chair, table, floor, wall, window,
sofa, door, etc.). The dataset has (X, Y, Z) coordinates and
(r, g, b) color information, but we only use (X, Y, Z) for
semantic segmentation.

Figure 3. Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS)

Among the 272 rooms, we filtered out hallway, WC, and
storage rooms, so that we can focus on "offices" and "con-
ference" rooms. That brings the total rooms used down
to 181. Among these rooms, we randomly sampled 151
rooms(83%) as training set and remaining 30 rooms are
reserved for testing.

To prepare the training data, we cut each room in the train-
ing set into a number of cubes where each cube corre-
sponds to 1.5m by 1.5m squares on the floor space. In each
cube, we randomly selects 8,192 points to participate the
model training. Then, combine all the rooms we get the
training data of shape (n, 8192, 3) and label of shape (n,
8192,1) where n is the number of 1.5m by 1.5m cubes.
Testing data is prepared the same way.

During each epoch of training, we randomly select n/2
cubes from the prepared training data. We trained the
model with 200 epoch and batch size of 8. This will guar-
antee all data cubes will be covered during 200 epoch of
training. The model is tested every 5 epoch, the testing is
done on all prepared testing data with batch size of 8. Fi-
nally, we save the best performing model.

Figure 4. Point-level accuracy and error rates on semantic label-
ing

Results and Findings.

The experiment resulted in 83.2% in overall class label
accuracy. Figure 4 breaks down the output by 13 object
classes and shows the per-class accuracy as a bar chart on
the left, and a confusion matrix (on the right) that commu-
nicates the degree of errors and confusions among classes.
The following observations can be made:

Observation 1. Relatively high level of accuracy was
achieved on ’wall,’ ’floor,’ and ’ceiling’ (90%+). This
is due to their simple geometric features and dominant
amount of training samples in the data.

Observation 2. Columns, boards, and windows have rel-
atively low accuracy, and they are often confused as walls
(as reflected in the confusion matrix of Figure 4.

Observation 3. Tables and chairs achieved around 80%
accuracy on average, which is quite impressive. There is
some degree of confusion between tables and chairs, be-
cause they tend to be cluttered together.

The above results were collected using the default value
of radius = 0.1 meter. We hypothesize that the choice of
search radius of local regions has significant impact on the
imperfection of object class label of points, as measured
by accuracy and confusion.

3.3 Experiment 2: Understanding the Impact of
Model Parameters on the Imperfection of Point
Semantic Labels

Among those model parameters identified in Table 1, set-
ting the proper radius value for local neighborhood balls is
the most sensitive action, due to the entanglement of fea-
ture scale and non-uniformity of input point set Qi et al.
(2017). In PointNet++, radius determines the receptive
field of the multi-layer perceptron (MLP) used to extract
local features. When it is set to a smaller value, the per-
ceptive field is reduced, but it is going to see more details
in the local, since each local region sphere will be sampled
on the same number of points used in each training epoch.
Conversely, a larger radius value will be equivalent to the
change of receptive field when you zoom out on a cam-
era lens. Larger radius allows detection of structures that
span larger areas. Subsequent feature learning layers in the
training model depend heavily on what the MLP can detect
within the radius from a centroid point. Based on this ob-
servation, we hypothesize that the choice of radius value
has significant impact on the performance of PointNet++
semantic segmentation. Next, we will conduct an experi-
ment to observe how the performance of PointNet++ se-
mantic segmentation model varies with the choice of ra-
dius.

Experimentation design
We will conduct the same experiment as described in Sec-
tion 3.2, except that we will repeat that experiment 13
times to collect performance data on different radius val-
ues r = [0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2,
0.225, 0.25, 0.3, 0.35, 0.4]. To keep the PointNet++ model
structure intact while changing radius, we sample the same
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Figure 5. PointNet++ semantic segmentation performance as a
function of radius parameter

number of points from each local region during model
training. The test dataset was prepared once and the same
sampled data points were used for all r values. The purpose
is to collect semantic label data on the same set of points
across all r values, so that performance data are easier to
be correlated for better comparison.

Experimental Results and Findings
We compiled the semantic label accuracy of all the test-
ing points and computed average accuracy for each ra-
dius value. The result is shown as a performance curve
in Figure 5. The low performance at smaller radius sug-
gests that narrow field-of-view degrades capacity to learn
local features. The performance of PointNet++ model for
ScanNet data improve rapidly as radius gets larger, until
it plateaued around r=0.1. This proves that the default set-
ting of r=0.1 in PointNet++ was a reasonable choice for
ScanNet data. Although overall accuracy is a good indi-
cator of performance, accuracy on interior objects (such
as furniture) is more important than on architectural ele-
ments such as walls, ceilings, and floors. To further inves-
tigate this, we created (Accuracy, Radius) curves for each
of the 13 object classes in ScanNet (see Figure 6). A few
observations can be made here:

Observation 4. The change of radius has vastly differ-
ent effect on different object class. For walls, ceilings and
floors, it seems that the choice of radius value does not
matter as long as it is over 0.1m. In contrasts, there seem
to be some "sweet spots" for doors and sofas that certain
radius values produce the best possible outcome.

Observation 5. selection of the radius value to optimize
performance is very challenging.. This was echoed by Qi
et al. (2017), but we now have more details to appreci-
ate the challenge. We are intrigued by the complex per-
formance response to radius change as shown in Figure
6, and we do not have good enough theory to explain the
phenomena. For example, r=0.15 seems to be an optimal
choice for detecting doors, but it is a poor choice for de-
tecting sofas.

Observation 6. The change of radius has complex inter-
actions with the configuration of rooms to create more

Figure 6. Radius-modulated accuracy curves by object classes

Figure 7. The effect of room configuration on errors and confu-
sion

performance variations across rooms. Figure 7 shows the
variation of accuracy across rooms for a given radius set-
ting (r=0.1) and an object class (tables). The rooms are
sorted by the accuracy measure on tables. An interesting
observation here is that tables in conference rooms seem to
be more accurately labeled than those tables in offices. We
explored the room configuration (point cloud view) to see
the unique and common aspects of those rooms. We found
that Conference rooms tend to have tables that are in large
size, centered in the room, have common oval shape or L
shape. In contract, tables in offices tend to be smaller, less
common in shape, and scattered along walls.

3.4 Enabling Interactive Exploration of Data
Imperfection

Given the insights we derived from the above two exper-
iments, we have come to a conclusion that it is impor-
tant for users of indoor semantic segmentation algorithms
(such as PointNet++). leveraging automated semantic seg-
mentation on point cloud data for 3D indoor object re-
construction is far more complicated than a plug-and-play
process. The modelers must have deep insight into how
the model works and how the choice of parameters (such
as radius) would impact the quality of point-level seman-
tics. Modelers need a way to experiment, evaluate, and
tune model parameters. Such activity can be supported by
an interactive visual environment where users can explore
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Figure 8. Interactive Dashboard for Exploratory Semantic Segmentation

the nature of semantic imperfections by themselves. Fig-
ure 8) shows our vision of such a system. The design of
this tool followed the coordinated multiple view approach
(Roberts, 2007). It has four component views A, B, C,
and D. View A serves as the initial overview that provides
high-level summary of overall accuracy at different radius
settings. View B shows confusion matrix under the current
radius value (indicated on the top of View B). View C is the
breakdown of accuracy measures by rooms, and users can
further filter this by object type ("class"). View D allows
full interactive inspection of point cloud representation of
a selected room, with the ability to zoom and rotate a 3D
object in six degree of freedom.

The four views are linked to support state sharing, mutual
filtering, overview+details, brushing and highlighting ac-
tions. Users may desire to investigate more details of per-
formance for any radius value by clicking on a segment of
view A. That will cause View B and View C to refresh with
the accuracy and errors for the new radius. When users at-
tempt to explain the patterns observed in View C, the can
choose to inspect the raw point cloud data or segmented
data (View D) by clicking on a bar in View C. That will
cause View D to refresh with the new room data.

This tool was designed with the following goals in mind:

• Provide an overview of segmentation accuracy

• Provide an overview of segmentation errors and con-
fusion

• For a given radius setting, explore details in variation
of accuracy and confusions by object classes

• Allow users to drill down to a subset of classes for
ease of comparison and prioritization.

• Allow users to drill down to a subset of rooms taking
a closer inspection of room configuration and geo-
metric structures.

4 Assessing the Reconstructability of indoor objects
from SLPC

This section will conduct an experiment to answer Ques-
tion 2, which is to understand whether and to what
extent indoor room objects can be reconstructed from
semantically-labeled point cloud representation of room
scenes. One challenge of this task is that we do not have
automated methods that we can trust to perform shape re-
construction (Laga et al., 2019), as it involves geometric
quality judgment based on human knowledge about each
class of objects. To get around this difficulties, we em-
ployed human intelligence in judging the degree of recon-
structability on object instances.

In our experiment, two human coders were hired to gen-
erate a rating on the quality of each object in a subset
of rooms, following a given codebook shown in Figure
9. This coding scheme was compiled by inspecting com-
mon types of imperfections and ranking them in the order
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of their damage to reconstructability. Given a distribution
of semantic labels in a room objects, a coder uses his/her
world knowledge to judge if certain object shape can be
inferred with some degree of confidence. This judgment
is translated to a reconstructability value between 0 to 10,
following the coding scheme.

Figure 9. Object-level quality scales and examples

Judging the reconstructability following the coding
scheme requires careful inspection of the geometric pat-
terns of semantic labeled points. For example, the top sur-
face and legs of a table are the main functional parts of ta-
ble, while other decorative parts may not be as important.
It is important that the point cloud semantic labels allow
table top geometry to be clearly delineated. To easy the
coding work, we developed an interactive tool that stream-
lined the process of selecting an object, comparing rec-
ognized object with its ground truth, and adding a rating.
Figure 10 shows the interface. The tool allows a human
coder to choose a room and an object in that room to be
the working object at anytime. The system will retrieve
the ground truth version and the predicted version of the
object and visualize them in a volume view which can be
freely rotated, zoomed, and tilted for inspecting the geo-
metric quality from different angles. By turning on/off the
ground truth, the coder will easily see the differences and
judge what are missing.

Understanding that qualitative coding scheme is subject to
variations of human interpretation, certain degree of cod-
ing errors and inconsistencies is expected. We assigned
two coders to work independently on objects in those
rooms in Area 1, 2, 3, and 4 of Stanford 3D Indoor Spaces
(S3DIS) dataset (Figure 3). Inter-coder reliability based on
Hallgren (2012) is 0.76.

We used the average value from the two coders as the in-
dicator of the recognized object quality, and visualized it
together with the point-level accuracy of each object as a
scatterplot (see Figure 11). Each dot is an object, and its
position on the scatterplot corresponds to the point class
label accuracy on the horizontal axis and the object quality
measure on the vertical axis. Dots are color-coded by their
object class. We made the scatterplot interactive to enable
exploration of the overall relationships and outliers among
the set of objects. Cursor-over on any dot will prompt more
details of the object to be shown as tool-tip. Clicking on a

Figure 10. Interactive interface for annotating object quality

dot will invoke a view of the object in 3D volume to see
both the ground truth and the recognized versions.

A number of patterns can be observed from the result in
Figure 11:

Observation 7. High point-level accuracy of class labels
on an object does not necessarily mean high level of shape
reconstructability. Take "chairs" as example (shown as
blue dots in the figure). Those chairs that have point-level-
accuracy between 80%-90% may end up with an object
quality rating from very good to very bad. When errors
are distributed evenly over different parts of an object, they
may not create much distortions on the shape and bound-
aries of an object and human eyes have little problem re-
covering the object shape. In contrast, if error points are
clustered and cause significant parts of the object to be
missing, the object quality will be significantly lowered.

Observation 8. The overall reconstructability of major
furniture objects are better than expected from point-level
accuracy. There are generally more tables, chairs, and so-
fas (in blue, green and pink colors) that are located on the
top region of the scatterplot in Figure 11. This is a good
news for indoor modeling research.

5 Conclusions and future work

In this paper, we developed a few experiments to explore
the imperfection of semantically-labeled point cloud rep-
resentation of room scenes for the purpose of 3D recon-
struction. The insight we gained from these experiments
can inform modelers in choosing indoor object reconstruc-
tion algorithms to achieve the best outcome. It will also
inform future development of novel 3D reconstruction al-
gorithms and workflows. We understand that our findings
are far from conclusive, and the results of our experiments
suggest much more questions needs to be answered on the
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Figure 11. Relationship between point-level accuracy and object-level quality

entangled relationships among the complexity of indoor
environment, the alternative configuration of deep learn-
ing models and data quality. Nevertheless, our findings
contributes to an initial theory of deep learning model be-
havior on semantic segmentation and object reconstruc-
tion. The interactive tools we developed for this work can
also be shared with other scholars who need tools to seam-
lessly integrate the process of model tuning and perfor-
mance evaluation.

6 Data and software availability

The 3D indoor point cloud data used in this pa-
per can be requested from S3DIS project website
(http://buildingparser.stanford.edu/dataset.html). Point-
Net++ semantic segmentation algorithm is available
from thr Github https://github.com/charlesq34/pointnet2.
The Interactive data exploration and coding tools
were written in Python and can be accessed
as JupyterNotebook projects from Github at
https://github.com/gxc26/PointClouds).
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