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Abstract. Planning and operations in urban spaces are
strongly affected by human mobility behavior. A better
understanding of individual mobility is key to improve
transportation systems and to guide the allocation of pub-
lic space. Previous studies have discovered statistical laws
of travel distances, but the topology of movement between
places has received little attention. We propose to employ
network modelling methods to analyze the effect of spa-
tial and context attributes on individual movement pat-
terns. The perspective of mobility as a network allows to
explicitly regard dyadic dependencies of sequential loca-
tion visits. Here, we consider two methods developed for
social networks and provide a formulation of mobility net-
works to justify their applicability. First, we use the Mul-
tiple Regression Quadratic Assignment Procedure to test
hypotheses on the influence of location attributes on mo-
bility behavior. Secondly, Stochastic Actor-Oriented Mod-
els are applied to model the evolution of mobility networks
over time. As a proof-of-concept study, we transform data
from one GNSS-based and one check-in based dataset into
mobility networks and present results from both methods.
We find relations that appear for a majority of samples and
thus seem inherent to mobility networks. The differences
between individuals and the available datasets are further
quantified and discussed. We conclude that the transfer of
network modeling methods is an interesting opportunity to
study network-related phenomena in geographic informa-
tion science.

Keywords. Human mobility, network modelling, move-
ment analysis, network dynamics

1 Introduction

1.1 Human mobility research

With the wide-spread availability of affordable tracking
technology and large-scale movement datasets, quantita-

tive human mobility analysis emerged as a field (Laube,
2014; Dodge et al., 2016). Human mobility plays an
important role in the modelling of disease spreading
(Kraemer et al., 2020), in supporting sustainable mobil-
ity (Bucher, 2020), studying animal movement patterns
(Demšar et al., 2021) and many other subjects (Dodge
et al., 2020). Aside from specific applications, there is a
rich body of literature that analyzes large-scale movement
datasets to gain general insights on human movement.
Findings include the identification of power-law proper-
ties in our travel patterns (Brockmann et al., 2006), in-
dividual characteristic travel distances (González et al.,
2008), groups with distinct mobility behavior (Pappalardo
et al., 2015) or an individual capacity of regularly visited
places (Alessandretti et al., 2018). Others study changes of
mobility behavior via clustering (Hong et al., 2021; Wang
et al., 2018), feature-based anomaly detection (Jonietz and
Bucher, 2018) or Bayesian approaches (Zhao et al., 2018).

1.2 Networks for individual human mobility

At the same time, complex network analysis emerged as
a field as many phenomena across domains could be ex-
plained using graph representations and methods from net-
work science (Strogatz, 2001). There are countless exam-
ples of spatial networks (Barthélemy, 2011) and the anal-
ysis of these networks is an important application area
of geographic information science (Curtin, 2007). How-
ever, there is little research available on the graph-based
representation and analysis of human mobility. Individual
mobility can be represented by a network of visited loca-
tions which can be used to analyze human mobility pat-
terns (Schneider et al., 2013), to predict the next visited
place (Rinzivillo et al., 2014), to label activities (Martin
et al., 2018) or to identify groups of similar movement be-
havior (Ben-Gal et al., 2019).

Although the network of visited locations is a lossy com-
pression of tracking data, the topology of these graphs al-
lows to analyze important aspects of human mobility be-
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havior, such as the distribution of visited location in space
and over time. Consider the following hypothesis as an ex-
ample: In our everyday life, we have the tendency to visit
locations consecutively that are close in space, such as the
supermarket close to our home or work location. To test
this hypothesis, the number of transitions between loca-
tions must be related to the geographic distance between
them. However, common statistical tests strongly rely on
the assumption of sample independence. Crucially, an in-
dividual’s visits to locations are not independent. Such de-
pendencies are explicitly modeled with ties in networks,
and we can borrow from the rich field of social network
analysis to study their characteristics.

1.3 Social network analysis

Indeed, graph theory formulations have been adapted for
use in sociology since decades (Scott, 1988; Kish, 1965;
Harary et al., 1965). The importance of social network
analysis increased further with the rise of online platforms
such as Facebook (Garton et al., 1997; Ellison et al., 2007).
Much research in the field has been devoted to quanti-
fying network properties, such as measures for density
or cohesion (Smith, 1975) or centrality indices (Land-
herr et al., 2010), and the latter have actually been used
for the analysis of movement (Blanford et al., 2015) and
traffic flow (Holme, 2003; Altshuler et al., 2011). Aside
from these measures, statistical models were proposed
to relate the structure or evolution of networks to ex-
planatory variables (Stadfeld and Amati, 2021). For exam-
ple, the Multiple Regression Quadratic Assignment Pro-
cedure (MR-QAP) (Krackardt, 1987; Freedman and Lane,
1983) allows to test the association between the network
and external variables, conditioning on the network struc-
ture. Stochastic Actor-Oriented Models (SAOMs) (Sni-
jders, 2001) were developed to explain the evolvement of
the network structure over time. Together, network mod-
elling methods from the social sciences provide statisti-
cally sound ways to simultaneously test and control for
the effect of multiple factors on network structure and dy-
namics.

1.4 Contribution

In this work, we thus propose to employ network mod-
elling methods to leverage our understanding of the prop-
erties and influence factors of individual human mobility.
We demonstrate in experiments on two tracking datasets
how network modelling may yield insights into the spatial
properties and temporal evolution of mobility networks.
The results are compared across users and datasets in order
to determine which characteristics are inherent to human
mobility. In summary, this paper contributes the following:

• We propose a formulation of human mobility net-
works that enable the application of methods from the
social network analysis field.

• Two methods are presented in detail, namely MR-
QAP to test for significant relations between network
ties and location properties, and SAOMs for the anal-
ysis of network evolution. The applicability of these
methods on mobility networks is discussed and veri-
fied.

• A proof-of-concept study on two diverse datasets is
presented. The proposed methods indeed yield inter-
esting findings with respect to the topology of in-
dividual mobility, identifying its driving factors and
changing characteristics over time.

2 Data and preprocessing

2.1 Datasets

Recent studies on human mobility oftentimes use large
datasets of call detail records (CDR) from mobile phones
(see for example Schläpfer et al. (2021)). CDR datasets
are usually not publicly available and are unlabelled. In
contrast, there are small tracking studies that offer high
tracking coverage and rich meta information, at the cost
of dataset size (Chen et al., 2016). Here, we consider two
datasets that were chosen because of their high tracking
coverage over a period of more than one year, offering a
good balance between dataset size and quality.

The first dataset is an excerpt of the public Foursquare
dataset. Foursquare is a social network where users can
share their location with friends. To do so, they “check
in” at each location they visit, and assign a purpose to the
visit, e.g. “work” or “bar”. The Foursquare global-scale
dataset1 presented in (Yang et al., 2015, 2016) is a large
collection of Foursquare data, including more than 33 Mil-
lion check-ins of 266,909 users over a period of around 18
months (April 2012 to September 2013). Each check-in
record comprises the timestamp, geographic coordinates
and purpose information. It is not guaranteed that users
track every trip they make. However, it can be assumed
that the most active users (among all 266,909 users in the
dataset) check-in most of their visited locations. Thus, we
restrict the dataset to the 100 most active users; specifically
the users with most check-ins at the “home” location. This
filter both ensures a high tracking coverage and avoids a
bias due to missing home locations. After filtering for suf-
ficient coverage (cf. 2.2.2), 42 users are included.

The second dataset is GPS tracking data from a study
conducted by the Swiss Federal Railways (Martin et al.,
2019). 139 participants were included in the study and
were given access to a general public transport pass for all
of Switzerland, as well as an electric vehicle for their per-
sonal use. The subjects participated in surveys about their
socio-demographic information, and were asked to track

1https://sites.google.com/site/yangdingqi/home/
foursquare-dataset
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their movements with an app. The MyWay2 app automat-
ically collects GPS data and divides the track into stay-
points, i.e. a cluster of trackpoints where the user stays at
one place, and triplegs, i.e. sections of trips done with the
same mode of transport. Staypoints are manually assigned
a “purpose” by the users, e.g. “work”. After preprocessing,
we found 114 users with sufficient tracking coverage to be
included in our study.

2.2 Data preprocessing

We define the individual mobility network based on the
locations visited by a user as nodes and the transitions be-
tween locations as weighted edges. The locations are di-
rectly provided in the Foursquare dataset as the check-in
locations. However, for Foursquare there is no information
on the transitions between locations. We thus assume that
every subsequent appearance of locations in the datasets
corresponds to a transition between them, except if two
subsequent check-ins are more than 12 hours apart. For the
Green Class study we have high resolution tracking data
available. We use the Python package Trackintel3 (Mar-
tin et al., 2022) to aggregate the provided staypoints and
triplegs into locations and trips, according to the data
model proposed by Axhausen (2007). Specifically, stay-
points are clustered into locations with the DBSCAN al-
gorithm (parameters: minPts= 1, ϵ= 30, i.e. a search ra-
dius of 30m). A sequence of triplegs is transformed into a
trip if it is not interrupted by an activity-labelled staypoint
or by a temporal gap of more than 25min.

2.2.1 Graph representation

The tracking data is transformed into networks. Let
D(t)sequential = [l1, l2, . . . , ln] be the ordered sequence of
locations visited during the time period t. A location li
is defined by the geographic coordinates of its center, and
comes along with a purpose. The sequence is first con-
verted into pairs of subsequent locations,

D(t)pairs = [(li, li+1) | i ∈ [1,n]∧ no gap between li, li+1]

Next, a weighted directed graph is created. Let Gt
u denote

the graph of user u at time period t. We first define O(D,e)
as the count of element e in the list D (the number of oc-
currences). Then Gt

u(V
t
u ,E

t
u) is defined as

V t
u = {li | ∀li ∈ D(t)sequential} (1)

Et
u = {e | ∀e ∈ D(t)pairs} (2)

w(e) =O
(
D(t)pairs,e

)
∀e ∈ Et

u (3)

Intuitively, the visited locations become nodes in the
graph, and the transitions between locations are directed
edges in the graph, weighted by the transition count. An
exemplary location graph is shown in Figure 1.

2https://play.google.com/store/apps/details?id=ch.sbb.myway
3https://github.com/mie-lab/trackintel

2.2.2 Splitting into time periods and limiting
networks to core activity

The experiments in section 4 analyze how the network
structure evolves over time. This analysis requires ac-
cess to several instances of a person’s mobility network
over time. Thus, we divide the tracking period into non-
overlapping time periods of 120 days. A period of nearly
four months guarantees a robust coverage of the re-
occurring activities of a user. It is also the maximal time
period that still results in three distinct time periods for
both datasets. We further limit our analysis to the stable
part of an individual’s mobility, including only locations
that are visited on a regular basis. A related concept was
termed activity set by Alessandretti et al. (2018). Here, we
define the stable part of an individual mobility network
by the distinct time periods: A location is part of the core
Cu if and only if it appears in all three graphs, formally
l ∈ Cu ⇐⇒ l ∈ V t

u ∀t. We restrict all graphs Gt
u to its

subgraph defined by the core, Gt
u[Cu]. All users with less

than 10 nodes in the core set (|Cu|< 10) are excluded.

2.2.3 Node and edge properties

Last, we prepare the following edge and node attributes:
1) the distance between two locations, 2) the distance of
a location from the node with purpose “home” (distance
from home), and 3) the purpose of a location. Note that the
first is an edge attribute whereas the latter two are node
attributes. The distances are computed with the Haversine
distance between the geographic coordinates. The purpose
was simplified to distinguish only four categories, namely
“home”, “work”, “shopping” and “leisure”.

In the following, we will analyze the network topology
with respect to these properties. Thereby it is important
to distinguish between alter and ego effects for node at-
tributes. The ego effect is the effect of the attribute of lo-
cation li on the creation of an (li, lj) tie, while the alter
effect refers to the attribute of location lj . In other words,
we can relate an edge either on the properties of its ori-
gin node (the ego) from which the edge is outgoing, or the
properties of its destination node (the alter with respect to
its incoming edge).

3 Analyze topology-context relations in mobility
networks

Given the graph and the location attributes for an individ-
ual, we demonstrate how to test hypotheses on the relation
between network edges and location properties. Based on
the available information and our prior knowledge about
human mobility, we consider the following hypotheses:

• H1: Ties occur more often between locations that are
geographically close to each other.
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Figure 1. An exemplary location graph in two views: The left image shows the actual geographic layout, while the right plot shows the
graph in a spring layout for visibility. In the location graph, nodes represent geographic locations and edges are direct trips of the user
between two locations. In both visualizations, the size of nodes (blue) is proportional to the number of visits to a location, and the edge
thickness shows the number of transitions between two locations, i.e. the edge weight.

• H2: Locations that are close to the “home” location
are more popular.

• H3: There are more transitions between locations
with the same purpose.

These hypotheses have been studied in similar forms. For
example, Papandrea et al. (2016) find that the movement
from place to place depends rather on the temporal than
on the spatial distance between them (related to H1). They
also explain visitation patterns with point-of-interest in-
formation, similar to H3. All research on the scales of hu-
man mobility (Brockmann et al., 2006; González et al.,
2008) are very related to H2; however, their statistical
laws regard the distribution of travel distances and do
not necessarily transfer to the core set of a user’s loca-
tions as considered here. Noulas et al. (2012) also use the
Foursquare dataset and compare properties of individual
mobility across cities, similar to our comparison of users
and datasets.

The advantage of network modeling methods is that it pro-
vides a statistically sound way to test for multiple influ-
ence factors at once (such as the spatial distribution of lo-
cations or their spatial relation to the user’s home), while
controlling for the sequential ordering of location visits
(e.g., the network structure). Specifically, we propose to
use the Multiple Regression Quadratic Assignment Proce-
dure (MR-QAP) (Krackhardt, 1988). MR-QAP is applied
to the weighted graphs of all users separately to test H1-
H3, and the results are compared across users.

3.1 Multiple-Regression Quadratic Assignment
Procedure

3.1.1 Background

The Quadratic Assignment Procedure was developed by
Mantel (1967); Hubert (1986) and Krackardt (1987) and
has revealed insights in a variety of network analysis prob-
lems, including patent citations (Park et al., 2013), teacher
collaborations (Noben et al., 2022), inter-physician net-
works (Mascia et al., 2015) and refugee flow (Johnson
and Schon, 2019). Here, a QAP approach is preferred
over other models, e.g. exponential random graph mod-
els (Lusher et al., 2013), for two reasons: a) Monte-Carlo-
based estimation methods are more complex and might not
converge, while QAP offers a simple approach but still rich
interpretations, and b) QAP can be applied to weighted
graphs without changes.

The Quadratic Assignment Procedure makes use of per-
mutation tests in order to deal with the challenge of dyadic
dependencies. Permutation tests is a type of resampling
that is commonly used to find the empirical distribution of
test statistics under the null hypothesis (Good, 2013). In
the case of networks, permutation tests offer a way to es-
timate the distribution of network statistics conditioned on
the observed network structure. In QAP regression, only
the rows and columns of the matrix of the independent
variable Z are permuted, leaving the network structure in-
tact. For each permutation, the regression model is fitted
and the parameters are collected. The resulting parameter
distribution is compared to the parameters of the observed
network.
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3.1.2 Method

To extend QAP to multiple independent variables
Z1, . . . ,Zn, MR-QAP was proposed (Freedman and Lane,
1983). Since permuting the rows and columns of a single
Zk is problematic with multiple variables, the empirical
distribution is instead computed with residual permuta-
tion. As in normal linear or logistic regression models, the
aim is to estimate the coefficients of the model

g(X) = θ0 + θ1Z1 + · · ·+ θnZn + ϵ , (4)

where the tie variable in X is the dependent variable, θ0
is the intercept, ϵ is the vector of residuals, and θk are the
coefficients that describe the association between Zk and
the ties in the network X .

There are two established methods for residual permuta-
tion, the Freedman and Lane (1983) method and Dou-
ble Semi-Partialing (Dekker et al., 2007). Here we ap-
ply the latter since it was particularly recommended for
testing linear models of continuous or skewed network
count data (Dekker et al., 2007). In short, Double Semi-
Partialing proceeds as follows: One variable Zk is re-
gressed on Z−k, i.e. all independent variables except for
Zk. The residuals are computed and permuted, and Z∗

k

is again computed using the permuted residuals. Finally,
Z∗
k is plugged in the original model (Equation 4) and the

model is fitted again, yielding the parameters of one per-
mutation (θ11, . . . ,θ

1
n). The process is repeated and after m

permutation runs, the estimates θ1, . . . ,θm determine the
empirical distribution of θ in the given network structure,
i.e. the expected estimates θ under the null hypothesis that
no external variable has any effect.

Our implementation uses the netlm function of the
sna (Butts, 2008) package in R. The location graph X is
the dependent variable. To test H1 - H3, we formalize each
hypothesis in an independent variable (Z1, Z2 and Z3) and
test its effect on the network structure X . Each of the Zk

is a description of pair-wise relationship of the available
nodes and it is therefore a matrix of dimension |Vu|×|Vu|.
We define Z1 as the matrix of pairwise distances of lo-
cations. H2 describes the effect of the location’s distance
from home on its “popularity”, which is its weighted inde-
gree. From the perspective of an edge, the hypothesis can
be answered by relating its weight to the properties of the
node attached to the incoming edge (the tie’s alter). There-
fore, Z2 is the distance-from-home property of the tie’s al-
ter. Finally, Z3 is defined as the binary matrix indicating
whether or not the locations have the same purpose. The
netlm function applies MR-QAP with m= 5000 resid-
ual permutations to get a good estimate of the empirical
distribution of θ0 − θ3.

3.1.3 Exemplifying MR-QAP for one user

The model is fitted for all users separately. An example
output is shown in Table 1, displaying the results for the

same user of the Foursquare dataset that is shown in Fig-
ure 1. The first column in Table 1 lists the intercept θ0 and
the estimated coefficients θ1 to θ3. The intercept is 0.36,
indicating that the number of transitions between two lo-
cations is positive with an edge weight of 0.36 if the other
influence factors (distances, distance from home and pur-
pose equality) were zero. With respect to the three hypoth-
esis, only H1 is supported for this user (p= 0.01). Note
that the absolute values of the estimates θ are not compa-
rable between distance- and purpose attributes since they
are provided in different units.

θ P (≤ b) P (≥ b) p-value

Intercept 0.36 1.00 0.00 0.00

Distance -0.02 0.00 1.00 0.01

Distance from
home (alter)

-0.01 0.12 0.88 0.26

Same purpose -0.09 0.15 0.85 0.30
Table 1. Output of the Multiple Regression Quadratic Assign-
ment Procedure for a single user. The regression model supports
the hypothesis that there are more ties between locations that are
close to each other.

3.2 Comparing MR-QAP results across users and
datasets

Based on the results of all individual users, we seek to
understand which relations are inherent to mobility net-
works (consistent across all users) and which ones are
user-specific. The regression coefficients were thus es-
timated for all of the 156 users (114 Green Class and
42 Foursquare) and for all of their three time periods
G1

u,G
2
u,G

3
u separately (see subsection 2.2). Five users

were excluded because their core locations (the locations
appearing in all three time periods) all had the same pur-
pose (”leisure”), leading to a ill conditioned statistical
model. We take the average of the coefficients over time
slots, yielding one coefficient per user per variable.

Figure 2 shows the distribution of the coefficients over all
users. Clearly, the direction of the effects (positive or neg-
ative coefficient) is the same for most users, indicating that
they are characteristic for mobility networks. A preference
for ties between locations of low distance is observed in
21% of the users (H1), whereas in only 6% cases there is
evidence for the relation of the distance from home to the
location’s popularity (H2). A significantly negative corre-
lation of the same-purpose attribute is shown for 37% of
the users, contrary to the statement in H3. We hypothesize
that the low evidence for H2 and the evidence contradict-
ing H3 are due to the strong importance of the home- and
work- locations in weighted networks. Since by far most of
the transitions between locations start or end at home, and
there is usually only one location labelled as home, most
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Figure 2. Distribution of the MR-QAP coefficients over all users of both datasets (42 Foursquare and 114 Green Class). For a vast
majority of users, the estimated intercept is positive and the distances between locations and their purpose accordance have a negative
effect on the edge weight. The effect of the alter’s distance from home is close to zero for Green Class users but has a negative effect
for many Foursquare users.

transitions occur between locations of different purpose,
contradicting H3. Furthermore, the distance from home
might play only a minor role because of the high impor-
tance of the work location which is not necessarily very
close to home. Experiments on unweighted networks and
further attributes could provide further insights but are out
of the scope of this paper.

3.3 Comparing inter- and intra-user variances

Last, we validate the stability of user-wise estimates over
time to distinguish differences between individuals from
differences due to network instability. The variance of the
coefficients over users (as shown in Figure 2) is now com-
pared to the intra-user variances (the variance of a single
user’s results over time). Let θu,t,k now denote the coef-
ficient θk estimated for the graph Gt

u. For inter-user vari-
ance we first take the average over time θu,k = 1

n

∑
t θu,t,k

and then the variance over users Varu(θu,k). For intra-user
variance we instead compute the variance over time steps
and then aggregate the results: 1

n

∑
u Vart(θu,t,k). Note

that Vart is the average over three time steps only and
must be taken with a grain of salt. The aggregated result
over users should however give a good estimate of intra-

user variance. Table 2 shows the results by variable. The
fact that intra-user variance is much lower than inter-user
variance indicates that there is a certain consistency in the
mobility behavior over time, and most of the coefficient-
variances are due to actual differences between individu-
als.

Intra-user std Inter-user std
Intercept 0.269 1.019
Distance 0.017 0.109
Distance from home (alter) 0.014 0.100
Same purpose 0.164 0.806

Average 0.116 0.509

Table 2. Comparing intra- and inter user variances of the esti-
mated coefficients in MR-QAP. The variance over time for one
user (“intra-user”) is significantly lower than the variance over
users, confirming the stability of user-wise results.

4 Modelling network dynamics

MR-QAP can yield insights about how attributes are as-
sociated with the existence or weight of ties. However, in
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MR-QAP the network structure is fixed, such that it can
not test any hypotheses on the network topology. For ex-
ample, we are interested to understand whether there is
a tendency for reciprocity or transitivity in the structure
of mobility networks. Intuitively, we would expect that
a user may use a link between two locations in the op-
posite direction as well (reciprocity), and that users may
take a shortcut between two locations that were previously
visited only via a third location (transitivity). To examine
such structural effects we propose to consider how mobil-
ity networks evolve and to determine the factors that drive
changes in their topology.

Network dynamics, i.e. changes to the connections in a
network over time, can be modelled with Stochastic Actor-
Oriented Models (SAOMs) (Snijders, 2001, 2017; Sni-
jders et al., 2010). The underlying model of SAOMs is a
continuous-time Markov chain where network states are
observed at discrete time steps. Here, we regard the un-
weighted location graphs since we are interested to study
the existence of connections between locations (instead
of the number of transitions). Over the course of several
months, transitions between pairs of locations appear that
have not been used before, and other transitions are not
used anymore. We regard the former as adding a tie to the
network in one step and the later as a tie deletion. In the
following, we first explain the SAOM method and describe
our formulation of mobility networks that enables its ap-
plication. We then answer the following questions using
SAOMs applied to the available datasets.

• Q1: Is there a tendency for ties to be reciprocated, or
for new ties to close a transitive triad?

• Q2: How does the purpose of a location affect the
formation of new ties to other locations?

• Q3: Can we observe a preference for new ties to be
added between locations that are close to another (or
are ties between distant locations dropped more of-
ten)?

4.1 Stochastic Actor Oriented Models (SAOM)

SAOMs have been used to model the evolution of friend-
ship (Boda et al., 2020), collaborative networks (Cao et al.,
2017), or financial networks (Chu et al., 2021). In social
sciences, the nodes in the graph are actors while the edges
describe a relation between actors, e.g. friendship. SAOMs
take an actor-centered perspective and model changes of
network ties as a Poisson process, where an actor i de-
cides to change one of its ties based on behavioral or net-
work states sik(G), with k as the index of the attribute
or network property Φk. For example, Φ1 could be reci-
procity and s11(G) is then the number of reciprocal dyads
attached to actor 1. As explained in Snijders et al. (2010),
the decision whether to add or drop a tie is based on the

following objective function:

f(i,G,β) =
∑
k

βk · sik(G) ,

where G is the current network and β is the vector of
behavioral / structural preferences. Intuitively, the greater
|βk|, the more relevant is the k-th attribute to the network
evolution. The probability to change a specific tie is then
given by the normalized value of the objection function:

P (i−→ j|x,β) = exp(f(i,x±ij ,β))∑
k exp(f(i,x

±ik,β))

where x±ik is the network state where the edge from i to
k is changed (dropped or added dependent on the current
state). Together, the network statistics sik(x±ij), weighted
by βk, are compared to the network statistics in all other
scenarios; i.e. when a different tie i−→ k is changed or
nothing changes (x±ii).

4.1.1 A SAOM-compatible formulation of human
mobility networks

One may object that an actor-oriented perspective is un-
suitable in the context of mobility, because the nodes in
our network are locations (and not actors). In response,
we draw attention to the user’s movement in the network.
At any point in time, the user is located at one node and
transitions to a new node along known or new connections.
In other words, the actor in the location graph is the user
at a location, deciding about a location’s transition. The
actor can decide to take a new transition from location li
to lj that was not done before (equivalent to adding a tie
between li and lj). On the other hand, we define edges to
be dropped if the corresponding transitions have not been
used for more than 120 days. We further justify the appli-
cation of SAOMs on mobility data by considering four key
assumptions of SAOMs.

1. The network panel data are the outcome of a
continuous-time Markov chain: Arguably, this as-
sumption is fulfilled to similar extent as for social net-
works. The formation of new friendships is not only
dependent on the current state of the network, but also
on previous time steps. In the location graph, the ac-
tor can choose freely to visit a new location based on
the current state, but edge deletion is dependent on
previous decisions.

2. Actors control their outgoing ties: With the pro-
posed formulation this assumption is fully satisfied.
The actor (the user at a location) controls its next
goal, i.e. the target node of a new tie.

3. Only one tie can change at a time: While this as-
sumption is not necessarily fulfilled for social net-
works (e.g. two friendships may be formed at the
same time), it is inherently fulfilled by physics here:
A user can not be at two locations simultaneously and
thus ties can change only sequentially.
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4. Actors have full knowledge of the network: Again,
this property is satisfied even better for location
graphs than for social networks. In the location graph,
the actor can remember most of its visited places and
the trips inbetween, whereas social agents are not
aware of all relations between the other agents.

We conclude that the assumptions of SAOMs are fulfilled
and SAOMs can be applied. We will further comment on
its validity in subsubsection 4.3.1 and 4.3.2.

4.1.2 Implementation and model details

We model selection processes with a SAOM implemented
in the RSiena package (Ripley et al., 2011). The input for
user u are the three networks Ĝ0

u, Ĝ
1
u and Ĝ2

u where Ĝ is
the unweighted version of G. We further provide the stable
attributes for each location which do not change from Ĝ0

to Ĝ2, i.e. geographic distances between locations, their
distance from home and the location purposes. Here we
consider both ego and alter effects for the monadic co-
variates (distance from home and purpose), as shown in
Table 3. In terms of a SAOM, the distinction between ego
and alter means that an actor decides about new ties based
on features of its current location (ego) or the features of
the selected destination node (alter).

In addition to these attributes, we also include network-
structure statistics, namely reciprocity, transitivity, outde-
gree density and outdegree activity. The outdegree den-
sity effect must be included (Ripley et al., 2011) because
it balances the creation and termination of ties over time
and thus acts as an intercept. The outdegree activity effect
on the other hand ”reflects tendencies for actors with high
out-degrees to send out extra outgoing ties ‘because’ of
their high current out-degrees.”(Ripley et al. (2022), p.46).
This effect was included to take into account the scale-free
nature of human mobility networks.

The SAOM model is fitted with the siena07 function
of the RSiena package, with four subphases in phase 2 and
3000 iterations in phase 3 as recommended. siena07 im-
plements the Robbins-Monro (Robbins and Monro, 1951)
algorithm to estimate parameters with the Methods of Mo-
ments. The model is fitted for all subjects of both datasets
individually. Model convergence is measured with the t-
ratios of convergence which is supposed to be below 0.1
(Snijders et al., 2010). Here, we observe that the model
converges well for a large majority of users; the criterion
is fulfilled for 142 out of 156 models. We exclude the ones
that did not sufficiently converge. Furthermore, as in (Sni-
jders et al., 2010) we compute the p-values of all effects,
dividing the estimates by their standard error. As before,
the output for user 327 is given as an example in Table 3.

θ std p-value t-ratios
effect

rate (period 1) 9.11 2.15
rate (period 2) 15.91 6.58
reciprocity 0.65 0.23 0.00 0.04
transitive triplets 0.26 0.07 0.00 0.00
outdegree (density) -2.11 0.17 0.00 0.06
outdegree (activity) 0.03 0.02 0.09 0.03
distance -0.12 0.02 0.00 -0.02
purpose alter 0.31 0.09 0.00 -0.05
purpose ego 0.29 0.11 0.01 0.02
same purpose -0.31 0.17 0.06 0.02
dist_home alter 0.01 0.02 0.49 -0.05
dist_home ego 0.02 0.02 0.33 0.01

Table 3. Output of SAOM fitted to a single user (User 327, see
Figure 1). The model converged well, i.e. all t.conv values are be-
low 0.1. For this user, there is evidence for a significant effect of
reciprocity, transitivity, pairwise distance and purpose (ego and
alter) on the formation of new ties.

4.2 Comparing SAOM coefficients across users and
datasets

We aggregate the results in Table 4. In a majority of sub-
jects, there is evidence for reciprocity as a selection bias
for building new ties (77%), whereas the transitivity is
only significant for 27% (Q1). As expected, the mobil-
ity networks as scale-free networks oftentimes show a ten-
dency to form new ties from locations that have high out-
degree already (41% are significant for a positive effect
of outdegree activity). The outdegree (density) statistic is
strongly negative, indicating that over the observed time
steps more ties were removed than deleted. With respect
to location properties, the negative effect of the distance
between two locations (Q3) is strongly supported (62%),
and there is also a negative effect of the same-purpose re-
lation (Q2), as observed in the MR-QAP analysis (44%).

Finally, we compare the results of the estimated coeffi-
cients between both datasets. Clearly, there is a strong cor-
respondence between the effects observed in the Green
Class and Foursquare data. There are only very few sig-
nificant estimates that point in the opposite direction (Ta-
ble 4 left). This indicates the existence of general prop-
erties of human mobility behavior that appear in very di-
verse datasets. Meanwhile, the magnitude of coefficients
and rates differ. The higher rate in the Foursquare data
implies stronger changes between the networks of subse-
quent time periods (compare section 4.3.1). We also com-
pare the coefficients of Green Class users to the ones of
Foursquare users in a two-sided independent t-test, and
find significant differences for most effects (rate 1 and 2,
reciprocity, outdegree density, distance, same purpose, and
distance home ego). Further work could investigate which
properties of the data cause the observed differences.
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Significant (%) Average coefficient
> 0 < 0 Green Class Foursquare

rate (period 1) 3.65 ± 1.97 6.45 ± 4.65

rate (period 2) 4.17 ± 2.20 7.53 ± 5.50

reciprocity 77 1 1.75 ± 0.87 0.72 ± 0.56

transitive triplets 27 1 0.12 ± 0.27 0.21 ± 0.19

outdegree (density) 0 91 −2.19 ± 0.80 −1.90 ± 0.55

outdegree (activity) 41 0 0.05 ± 0.08 0.03 ± 0.07

distance 0 62 −0.03 ± 0.04 −0.10 ± 0.14

purpose alter 32 2 0.33 ± 0.75 0.28 ± 0.36

purpose ego 9 3 0.07 ± 0.87 0.20 ± 0.26

same purpose 1 44 −1.06 ± 1.05 −0.24 ± 0.32

distance home alter 11 1 −0.00 ± 0.04 −0.02 ± 0.10

distance home ego 11 1 0.00 ± 0.04 −0.05 ± 0.15

Table 4. Aggregated coefficients of a SAOM fitted to all users.
The left part shows the percentage of users with significantly pos-
itive or significantly negative coefficients. The right part lists the
average coefficient values by dataset. When mobility networks
evolve, there is a tendency for reciprocal and transitive ties, and
ties between locations that are close to each other. While most
effects appear to similar extent in both datasets, the change rate
is larger in the Foursquare dataset.

4.3 Validation

4.3.1 Measuring network-stability with Jaccard
indices

For a successful application of SAOMs, the network
should change over time, although not too much. The net-
work change can be quantified with the Jaccard index (Jac-
card, 1900), as explained in Snijders et al. (2010). The
Jaccard index between Ĝt

u and Ĝt+1
u is the fraction of the

number of ties present in both Ĝt
u and Ĝt+1

u divided by the
union of ties in Ĝt

u and Ĝt+1
u . Formally, with N11 as the

number of ties present in both graphs, and N10 and N01

the number of ties present only in the first or second graph
respectively, the Jaccard index is defined as

J (Ĝt
u, Ĝ

t+1
u ) =

N11

N11 +N10 +N01

If there are many changes, the Jaccard index is low. Ac-
cording to Snijders et al. (2010), a Jaccard index above 0.6
is preferred for a SAOM, but an index between 0.3 and 0.6
is acceptable. Here, we find an average Jaccard index of
0.45 (±0.13). Figure 3 depicts the distribution of indices
and the relation between J (Ĝ1

u, Ĝ
2
u) and J (G2

u,G
3
u). We

first observe that in a large majority of cases, the Jaccard
index is sufficient for the application of a SAOM. Sec-
ondly, Figure 3 shows that the networks are more stable in
the Green Class dataset, corresponding to the difference in
rates in the model (Table 4). Third, there is a strong corre-
lation (Pearson r = 0.78) between both Jaccard indices. It
seems that the change rate in mobility networks are highly
user-specific and stable over time.
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Figure 3. Correlation of the two Jaccard indices over three time
periods. The Jaccard index is in general higher for the Green
Class users, which thus seem to have more stable location net-
works. The indices of the two time steps are strongly correlated,
providing evidence for a user-specific network stability. Most in-
dices lie between 0.3 and 0.6 such that a SAOM is applicable.

4.3.2 Goodness-of-Fit evaluation

While the SAOM aims to fit reciprocity and transitiv-
ity statistics of the observed networks, it does not take
into account other network characteristics, such as the
indegree distribution. Thus, the model Goodness-of-Fit
(GoF) can be estimated from such unmodelled statistics.
As common in applications of SAOMs, we compare the
indegree-, outdegree- and geodesic distribution (Kalish,
2020). The latter refers to the distribution of all-pair short-
est path distances in a graph. We apply the RSiena function
sienaGOF which runs multiple simulations and com-
putes p-values to quantify the differences between ob-
served and simulated networks. The p-values are com-
puted with a Monte Carlo test based on the Mahalanobis
distance (Ripley et al., 2011). The null hypothesis is that
the degrees (or geodesic distances) of simulated and ob-
served networks stem from the same distribution. Figure 4
showcases the GoF results for our running example, user
327. In the optimal case, the degree- or geodesic distri-
bution of the simulated networks should match the one of
the observed network. In Figure 4 the distributions corre-
spond very well, and there is no evidence for significant
differences (p≥ 0.744).

We evaluate the GoF for all included users, yielding 142∗3
p-values for the three GoF statistics. 75% of those val-
ues are above 0.05, demonstrating that for a majority of
cases the observed network statistics lie within the 95%
confidence interval of the simulated networks’ distribu-
tion. 88% are within the 99% confidence interval. Since
these statistics were not considered in the model fit, the
results show a general ability of the model to yield sim-
ilar network structures. Follow-up work could investigate
whether including further covariates or parameter tuning
may improve the GoF according to these metrics.
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Figure 4. The Goodness-of-Fit for a SAOM can be evaluated by comparing the simulated and observed distributions of indegree,
outdegree and geodesic distances. For this exemplary user (user 327) the model obtains a good fit as the distributions are not significantly
different (p > 0.05). The distributions of the observed networks (red line) correspond well to the distribution of simulated networks
(violin plots).

5 Discussion and conclusion

While human mobility behavior has been studied in many
aspects, its network characteristics have received little
attention. In contrast to previous work on human mo-
bility (Alessandretti et al., 2020; González et al., 2008;
Brockmann et al., 2006; Pappalardo et al., 2015; Schläpfer
et al., 2021), the methods presented here not only regard
the scales of mobility, but its topology, i.e. the relations
between locations. We provided results on two datasets to
demonstrate the new questions that can be answered about
human mobility with network modelling methods.

First, the influence of location properties on the network
structure could be quantified with MR-QAP. Our analy-
sis provided evidence for a negative effect of the distance
between locations; however, the results are strongly in-
fluenced by the prominence of the home and work loca-
tions in mobility networks. Our comparison across users
and across distinct time periods corroborates the hypoth-
esis that these characteristics are inherent to human mo-
bility for the most part, for a smaller part due to individ-
ual choices, and only marginally related to changes over
time. Furthermore, the evolvement of the unweighted net-
works over time was modelled with a SAOM. The SAOM
converged well and offers insights in the processes how
connections between locations are created and disregarded
over time. There is evidence for a tendency towards recip-
rocal and transitive ties, as well as for a tendency to form
new ties starting from locations that already show high ac-
tivity. Together, both methods revealed interesting proper-
ties of individual human mobility and our analysis thereby
demonstrates the value of network modelling methods in
movement analysis.

We see several opportunities for future work. Using
SAOMs for weighted networks could be used to answer
questions related to changes in the quantity of transitions
between locations. Other methods such as Exponential
Random Graph Models (ERGMs, see for example Lusher

et al. (2013)) could yield insight into the processes that
form location graphs. Equipping the location graph with
additional attributes may yield further insights about hu-
man mobility. For example, preferences for transitions be-
tween locations could be related to a location’s surround-
ings, i.e. POI data, or its general visit frequency of other
people. Thus, we conclude that the application of network
modelling methods is an interesting endeavour for future
research on mobility, and could reveal novel findings on
the factors that drive human movement.

Data and software availability

The source code to reproduce our results on the pub-
lic Foursquare dataset is available at https://github.com/
NinaWie/network_analysis.
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