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Abstract.
Active travel provides significant public health benefits in-
cluding improving physical and mental health and air qual-
ity. Given the geography of congested roads, availability of
required infrastructure and cost of transportation in cities,
promoting active travel, including cycling, can be a good
solution for commuting within built environments. Hav-
ing a better understanding of the key drivers that may in-
fluence bike ridership can help with designing cities that
accommodate cyclists’ needs for healthier citizens. This
paper examines the built environment features that may
affect commuting cyclists. We respectively employ Ordi-
nary Linear Square (OLS) regression and Geographically
Weighted Regression (GWR) for 136 Intermediate Zones
of the city of Glasgow, UK. The results of GWR show
that the significant local variation in green areas suggests
that even though the global regression showed a negative
association between the greenness and commute cycling,
over half of the IZ areas had a strong positive association
with the green areas. Building height and Public Trans-
port Availability Index show geographic patterns where
the residuals are fairly stationary across the study area with
some clusters of high residuals. Performance wise, the re-
sults from GWR provided an R2 of 0.73 which was higher
than OLS at 0.3. Our results can provide insights into how
to use crowdsourced cycling data when there are spatially
and temporally limited resources available.

Keywords. Active Travel, Geographic Weighted Regres-
sion (GWR), Strava Data, Built Environment, Crowd-
sourced Data

1 Introduction

Active travel provides important benefits to public health
by increasing physical activity (Doorley et al., 2015). Ac-
cording to Obesity Action Scotland, 28% of the adult pop-
ulation in Scotland is obese, 65% overweight or obese, and
16% of children aged 2-15 are at risk of obesity. As such,

physical activity has been highly recommended as a fac-
tor of positive weight management, along with providing
established benefits on mental health (Je et al., 2009).

One of the first steps to promote active travel is to un-
derstand the behaviours of individuals and patterns of
their travels. Studies have shown that active travellers,
especially (commuting) cyclists, were more motivated to
commute where the built environments, such as wider
bike lanes (Sun et al., 2017b), more green areas (Winters
et al., 2010), convenience to workplaces (Zhao, 2014; Sar-
jala, 2019; Sun et al., 2017b), and connections to public
transport (Zhao, 2014), were more advanced. Considering
many cities have attempted to improve their bikeability, it
is fundamental to conduct case studies to develop an un-
derstanding of the most influential factors in each area, as
to develop tools to aid decision making and the evalua-
tion of the implementation of investment schemes (Aldred,
2019).

Many studies which investigated the influence of the built
environment on citizens’ choice of transport rely on sur-
veys and questionnaire data or cycling counts at fixed spots
(Song et al., 2013; Aldred et al., 2019; De Vos et al., 2019;
Echiburú et al., 2021). However, these studies have limita-
tions for their small sample sizes as well as a short period
of examination to sufficiently understand the spatial and
temporal trends of cycling. Some studies have used smart-
phone devices to capture their route choices via GNSS data
(Chen et al., 2018; Khatri et al., 2016; Lu et al., 2018; Scott
et al., 2021; Ta et al., 2016). However, the platform for data
gathering was computationally expensive for users to un-
derstand the logic and upload their trajectories, which, for
these studies, resulted in a smaller sample size.

The popularity of activity tracking apps has increased to
the point that people voluntarily share data on their recre-
ational and utilitarian movements. Crowdsourced data
such as this, also called volunteered geographic informa-
tion (VGI), is often more spatially and temporally compre-
hensive than traditionally acquired data and encompasses
a much larger user group (Ferster et al., 2018). The fit-
ness tracking app Strava is one of the most popular in its
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genre, and it is becoming increasingly popular amongst
researchers and urban planners as well due to the Strava
Metro service, a data service that aims to enable the har-
nessing of Strava data for urban planning improvement
(Strava, 2021).

This paper examines the built environment factors that af-
fect commuting cyclists. This paper will achieve two ob-
jectives: i) to explore the travel patterns of Strava data be-
tween 2017 and 2018 with respect to the built environment
features in Glasgow; ii) to compute the strength of the built
environmental characteristics against cycling.

2 Related Works

The positive impacts of active travel (AT) for the commu-
nity, environmental health and individual health are well
recognised by governing and public health bodies (Door-
ley et al., 2015). An increase in active travel encourage-
ment has led to growing yearly investments - the latest
reaching £338 million1. According to the government re-
port, around 34% of car journeys in Scotland are less than
4km long and could be done by walking or cycling instead.
Active Travel Scotland published in 2014 a plan named
‘A long-term vision for active travel in Scotland’ 2 envi-
sioning what an active travel optimised country looks like,
being infrastructure one of the key features.

2.1 Environment and Socioeconomic Characteristics
and Cycling

The urgency to understand how cycling infrastructure af-
fects behaviour has been motivated by the growing aware-
ness of active travel benefits. Neighbourhood characteris-
tics positively influence the tendency to cycle(Song et al.,
2013; Macmillen and Stead, 2014; Aldred, 2019). De Vos
et al. (2019) found the presence of appropriate infrastruc-
ture to drastically increase travel satisfaction in active trav-
ellers. Montreal saw a significant increase in cycling likeli-
hood after years of safe-road enhancing networks (Zahabi
et al., 2016). However, a study led over three selected sites
in the UK, found that infrastructure alone may not be suf-
ficient (Song et al., 2017). The cycling network is used as
a variable in this analysis in two forms: segregated paths
and paths shared with traffic. Road class was found to be
strongly influential in cyclists’ route choices in (Sun et al.,
2017b) and (Le et al., 2021), therefore a bespoke classifi-
cation of the road network is also included in the models.
The relationship between cycling routes and land use has
been observed to lean in different directions. Generally,
the proximity to greenery is a key factor in studies that
look at active travel mode share. Park and Akar (2019)
found that their participants preferred routes surrounded

1https://www.gov.uk/government/news/338-million-
package-to-further-fuel-active-travel-boom

2https://www.transport.gov.scot/publication/scottish-
government-s-long-term-vision-for-active-travel-in-scotland/

by a low grade of the land-use mix; Zhao (2014) found
that a mixed environment is preferred in Beijing, while
Mäki-Opas et al. (2016) concluded that a high proportion
of recreational green space contributed negatively to the
levels of active commuting, whereas the presence of veg-
etation was the most important environmental characteris-
tic in Van Holle et al. (2014). The aesthetic experience of
the route was decisive for the participants in Stefansdottir
(2014), especially in terms of greenery and distance from
motorized traffic. In this study, in addition to the surround-
ing green spaces, it was decided to include the building
height variable, attempting to consider the aesthetic qual-
ity of the most travelled routes. As per the socioeconomic
aspect, the percentage of the unemployed population per
output area is considered. People in employment have the
necessity to commute, which paired with stable income
often leads to higher usage of motorized vehicles (Brand
et al., 2014). More recent research indicated that people
who received higher education and are in employment de-
velop ‘greener’ habits and are starting to move away from
car use (Dadashova et al., 2020; Le et al., 2021; Song et al.,
2017; Sun et al., 2017b). In other instances, the employ-
ment rate seems to have a non-zero correlation with cy-
clists’ chosen routes (Sun et al., 2017b). Some studies
looked at the correlation with public transport availabil-
ity and revealed that high levels of public transport ac-
cessibility are associated with higher bicycle usage pre-
sumably due to high population density (Winters et al.,
2010, 2011). These differences in findings can be moti-
vated by the variety in study areas, cultural differences and
other non-controlled factors. Few of these studies consid-
ered all variables concurrently, therefore the observed as-
sociations may have been influenced by unforeseen vari-
ables.

2.2 Cycling data

Many studies have analysed the influence of infrastruc-
ture and/or the built environment on cyclists’ route choice
through questionnaires, surveys or census data (Mertens
et al., 2016; Echiburú et al., 2021; Ek et al., 2021). Lee
and Moudon (2008) analysed respondent survey data and
their results highlighted good street lighting to be the most
important factor for choosing cycling, and traffic volume
to be the most significant obstacle. Mertens et al. (2016)’s
respondents identified cycle path type as the most im-
portant environmental factor. However, GPS-based solu-
tions have become increasingly applied, with some mixed-
approach exceptions. Krenn et al. (2014) investigated the
association between the built environment characteristics
and bicycling for transportation using GPS data of 70
participants and digitized routes acquired from a survey.
Broach et al. (2012) provided the participants with hand-
held GPS devices to track their utilitarian trips and focused
on bicyclists’ preferences for facility types, e.g. route dis-
tance, turn frequency, intersection control, road type. Sar-
jala (2019) explored the relationship between the built en-
vironment and active travel in Tampere, Finland, with GPS
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enabled smartphones. Many authors employed data from
the fitness app Strava, which raised the question of whether
Strava data represents the demographic and route char-
acteristics of the total cycling population. Strava data is
crowdsourced data, and as such offers large volumes of
data with the potential to be collected at the time and lo-
cation that the apps are used; however, this type of data
is limited by the target market of the provider company.
For example, Griffin and Jiao (2019) stated that 3%–9%
of bicycle trips counted on trails in Austin used Strava
at the time of the count. However, this percentage can
change based on the study area, road network availability,
socioeconomic, seasonal, and demographic factors (Con-
row et al., 2018; Jestico et al., 2016). Previous studies
have explored the potential of crowdsourced data to pre-
dict real cycling volumes or in relation to other influen-
tial factors. Jestico et al. (2016) employed linear regres-
sion to quantify the strength of the association between
crowdsourced data and manual cycling counts in Victo-
ria, British Columbia, concluding that while representing
a small user group, Strava data has the potential to predict
actual cycling counts, especially in urban areas. Kwayu
et al. (2021) found that this type of fitness crowdsourced
data represents a biased set. Lin and Fan (2020) quanti-
fied the relationship between manual cycling count, Strava
count and other relevant variables and proved Strava’s
quality assurance.

3 Methods

3.1 Study Area

The city of Glasgow has been chosen as a study area as
the city has experienced a significant increase in cycling
up to 11,000 cyclists per day, which is a 111% rise over 9
years (Sustrans, 2018). In addition, Glasgow has actively
collected cycling information in tribute to the city council
investments over the past 15 years, which resulted in a va-
riety of findings related to weather, distance, recreational
cycling, and built environment (Hong et al., 2020a, b;
McArthur and Hong, 2019; Sun et al., 2017b).

3.2 Data and Software Availability

Cycling: The University of Glasgow’s Urban Big Data
Centre provided Strava data for 2017 and 2018 (https:
//www.ubdc.ac.uk). The data contains three products:
Nodes, Edges, Origin/Destination (OD). The Edges prod-
uct, based on the road network extracted from Open-
StreetMap, contains each street segment on which activ-
ity was recorded with hourly measures. Nodes and OD
were not used. The Strava app lets the user classify the ac-
tivity as ‘recreational’ or ‘commute’, which then appears
as a field in the products. In this analysis, the total ac-
tivity count is used for the correlation with authoritative

data, whereas the commute count (hereon referred to as
CTCNT) is employed for the regression analysis.

For comparison with on-site cycling counts, The UK De-
partment of Transport’s annual average daily flow (AADF)
product was used, which contains the cycling count at 200
locations across the city for 2017 and 2018.

Table 1. List of Variables

Type Variable

Boundary Intermediate Zone (IZ) 3

Cycling Strava 2017
Strava 2018

Environmental Building Height
Variables % of Green Space

Public Transport Availability Index

Building Height: Building height reports the absolute and
relative heights of buildings in the selected area. We used
the maximum relative height, which is "the maximum ab-
solute height for building minus the absolute height of
ground".

Green Space (%): Provided by the OS Mastermap, the
product of the green space categorises green areas based
on their primary function, meaning it describes the pur-
pose of the area (e.g., golf course, public park, cemetery,
etc.).

Public Transport Availability Index (PTAI): PTAI takes ac-
count of both service frequency and service area and in-
cludes public transport on rail and wheels (i.e., coaches
and buses) at LSOA level4.

The data were pre-processed and implemented based on
the R packages of tidyverse (Wickham et al., 2019),
sf (Pebesma et al., 2018), tmap (Tennekes, 2018),
spgwr (Bivand et al., 2020), and spdep (Bivand et al.,
2005). For reproducibility, we stored the aggregated
data and the execution code to our GitHub repository
https://github.com/dataandcrowd/AGILE2022. Note that
due to the data sharing policy, we are not allowed to share
the raw Strava dataset to the public.

3.3 Geographically Weighted Regression

If the residuals of an Ordinary Least Squares (OLS) regres-
sion are distributed spatially, a Geographically Weighted
Regression (GWR) may be used. This means the rela-
tionship between the dependant and independent variables
may vary geographically (Brunsdon et al., 1998), i.e.
GWR assumes one global model can not describe this re-
lationship and finds the geographical changes in the model
(Fotheringham et al., 2003).

Yi = a0(lati, longi)+
∑k

1(lati, loni)xik + ϵi,

4LSOA: lower layer super output area is the second smallest
geographic unit in England’s demographic datasets
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where lat and long identify the coordinates of location i
where the value lies on, the parameter estimates are the
continuous function ak(lati, loni) k number of indepen-
dent variables x at location i, distinguishing the equation
from OLS regression by this spatial reference. By defining
a bandwidth for a grid that moves over data, GWR fits a
model to the subset of data that falls into the grid, giving
the most weight to the points that are closest to the one at
the centre.

Given this paper works at administrative level data, we
have taken an adaptive window size. In other words, we
used the bandwidth that considers the immediate four
neighbours (0.037 × 136 IZs ≈ 4 IZs). AICc was used to
compare the performance of both global and local models
(Feuillet et al., 2015).

4 Results

4.1 Spatial Distribution of Variables

The average number of Strava users reported in 2017 were
128,697 persons per IZ. This figure increased to 135,287
in 2018. Figure 1 shows that the distribution is positively
skewed as many people have reported short-term journeys
(Conrow et al., 2018). Regarding the spatial aspect, the
users have frequently cycled in the city centre than the out-
skirts (see Figure 2).

Table 2. Descriptive Statistics

Variable Min Median Mean Max

Strava 2017 1,760 79,293 128,697 1,312,075
Strava 2018 2,275 81,615 135,287 1,421,505
Green 1.3 8.1 8.8 20.6
B.Height(m) 5.7 8.1 9.03 21.1
PTAI 245.8 808.5 1,022.2 4,990.8

Figure 3-Top shows that the per cent of green areas (by
Intermediate Zones) gradually tends to decrease as it goes
outside the city centre. The average is 8% across the whole
area but the lowest is situated in the city centre as well as
the city south.

The average building heights per IZs were 9 meters across
Glasgow, but noticeably high rise buildings are concen-
trated in the city centre. The City Centre South was the
highest at 21.1m followed by City Centre East and City
Centre West (see Figure 3-Mid).

PTAI (Public Transport Availability Indicators) tend to be
more clustered in the city centre (>3000) and around the
major bus routes (>2000) while the north and the east are
relatively lower (<1000) (see Figure 3-Bot).

Figure 1 depicts that the distributions of both the response
and the predictor variables are highly skewed. Hence, a
natural log was applied across all variables to closely nor-

malise the distributions of all variables to meet the as-
sumption of the OLS and GWR regressions.

Figure 1. Histogram of the variables

Figure 2. Distribution of Strava Counts

4.2 Ordinary Least Square Regression

The OLS results are shown in Table 3. Results show that
the log-transformed green area (%) and building height
variables are significant in the 2017 and 2018 models.
The findings are consistent with the results of the follow-
ing studies (Sun et al., 2017a; Heikinheimo et al., 2020;
Hochmair et al., 2019; Munira and Sener, 2020). The
logged PTAI was slightly over the p-value<0.05 threshold
for the 2017 model and was on par with the 0.05 threshold
for the 2018 model.

To check the multicollinearity amongst the predictors, we
used the variance inflation factor (VIF) to check whether
the acceptable scores are usually below 10 (Yang et al.,
2020). The variables showed 1.45, 1.98, and 2.08 for green
area, PTAI, and building height respectively.

R2 is around 0.3 for both years, meaning that the explana-
tory power is not too strong. In other words, the variables
contain a higher amount of unexplainable variability.

The residuals are plotted in Figure 4. It is vital to examine
the OLS results and the residuals to understand whether
there exists a spatial autocorrelation. The Morans’I re-
turned 0.36 for both 2017 and 2018 with p-values less than
0.01. This means that the residuals have a weak spatial au-
tocorrelation. Strava 2017 and 2018 were separately fitted
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Figure 3. Distribution of Variables: %Green spaces, PTAI, and
Average Building Heights

Table 3. Results of OLS Regression. All of the variables were
log transformed.

2017 β Stn.Err VIF

Intercept 7.07*** 1.40
log(Green area) -0.48* 0.20 1.45
log(PTAI) 0.37. 0.2 1.98
log(Building height) 1.18* 0.49 2.08
R2 0.30

2018 β Stn.Err VIF

Intercept 6.65*** 1.40
log(Green area) -0.43* 0.20 1.45
log(PTAI) 0.39* 0.2 1.98
log(Building height) 1.27. 0.49 2.08
R2 0.31

to the predictor variables using GWR. As the Strava data
were positively skewed, we normalised them before we
implemented the models.

Figure 4. OLS residuals for the response variables. Morans’I for
both residuals computed for 0.36 (weak clustering)

4.3 GWR: The Model Fit

The GWR model is presented together with the OLS re-
sults in Table 4. In the table, the R2 were 0.735 and 0.733
for the GWR, which significantly outperformed the OLS
results. Regarding the goodness-of-fit (AIC), the GWR re-
sults provide 300 and 303 for both years of Strava data,
which, with the exponential transformation, imply a huge
difference to the original fit.

Table 4. Comparison of Model Fit

Model Response R2 AIC

OLS Strava 2017 0.30 401
Strava 2018 0.31 401

GWR Strava 2017 0.735 300
Strava 2018 0.733 303

Figures 5 and 6 exhibits the coefficients of the GWR re-
sults. For all predictors, a notable spatial variation of the
local R2 is seen across Glasgow ranging from 0.8 to around
0.07 in 2017 and 2018. The highest R2s are identified in
the city centre to the northern area of Glasgow, while the
lowest R2s are mostly situated in the eastern part of the
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city. However, despite the remarkable improvement on the
overall R2s from the GWR models, further investigation
on the infrastructural aspects is needed in terms of the ar-
eas with lower predictive power e.g. East Glasgow is lower
than the global R2.

4.4 GWR: Model Coefficients

Tables 5 and 6 exhibit the coefficients from the GWR
models to those of OLS models (global). Besides the in-
tercepts, the per cent of Green areas range from -0.24 to
0.23 in 2017 and from -0.2 to 0.28 in 2018; PTAI range
from -0.001 to 0.0039 in 2017 and from -0.002 to 0.003
in 2018, and Building height range from -0.44 to 0.35 in
2017 and from -0.37 to 0.4 in 2018. Based on the esti-
mation of the GWR model, the spatial distribution of the
coefficients can be seen in Figures 5 and 6. Each predic-
tor shows a spatially diverse outcome regarding its coef-
ficients. For the per cent of green areas and commute cy-
cling, significant positive coefficients are distributed over
the north (inc. Gilshochil, Parkhouse), east (inc. Haghill,
Gallowgate), and the south-west (inc. Pollock). While the
coefficient of PTAI is less sensitive across Glasgow, rel-
atively high values of the coefficient include the western
areas (e.g. Pollock and Drumoyne) and the northwestern
areas (e.g. Drumchapel). The coefficient of building height
shows a contrast between the high and low areas. The high
areas are situated in the east (11 IZs), parts of north and
west (4 IZs respectively), while significantly low areas are
in the northwest (5 IZs).

Table 5. GWR Coeffiencits for Strava 2017 Users

Variable Min Median Max Global

Intercept -8.73 5.95 20.48 7.07
log(Green) -2.23 0.01 1.99 -0.48
log(PTAI) -0.79 0.52 2.78 0.37
log(B.Height) -4.06 0.45 3.48 1.18

5 Conclusion

This study respectively applied OLS and GWR regres-
sion to identify the global and local associations between
key predictors and cycling using Strava Metro’s cycling
commute data for the period of 2017-18. Variables of of
green areas, building height, and public transport availabil-

Table 6. GWR Coeffiencits for Strava 2018 Users

Variable Min Median Max Global

Intercept -7.77 5.88 20.37 6.65
log(Green) -1.96 0.05 1.99 -0.43
log(PTAI) -0.91 0.51 2.64 0.39
log(B.Height) -3.56 0.57 3.87 1.27

Figure 5. Estimated Coefficients of Strava Cycling (2017) and
the Environmental Variables

Figure 6. Estimated Coefficients of Strava Cycling (2018) and
the Environmental Variables

ity were collected and cleaned based on the Intermediate
Zones (IZs) of Scotland.

Overall, the significant local variation in the effects of
green areas (log.green) suggests that even though the
global regression showed a negative association between
the greenness and commute cycling, there were over half
of the IZ areas that have a strong positive association with
the green areas in both 2017 and 2018. The positive areas
were mostly situated in the northwest (e.g. Netherton) or

AGILE: GIScience Series, 3, 15, 2022 | https://doi.org/10.5194/agile-giss-3-15-2022 6 of 9



along the river Clyde where parks and cycling paths were
constructed. This was something that the OLS regression
(global) cannot reveal.

Building height (log.height) shows geographic patterns
where the residuals are fairly stationary across the study
area with some clusters of high residuals in the north and
the central east. We carefully speculate that low skylines
and decent cycling infrastructures might have increased
people to cycle to work more frequently (Teixeira et al.,
2020). The Public Transport Availability Index i.e. PTAI,
which was chosen as a proxy to associate public transport
access points with bike commute, show a positive relation-
ship overall, but the residual variation was low and ho-
mogenous throughout the study extent, meaning the index
was neither more nor less effective.

In terms of the model performance, the outcome of GWR
performed better than that of OLS with lower AIC val-
ues (i.e. 400 vs 300) and higher R2 (i.e. 0.7 vs 0.3). This
suggests that GWR is more suitable to detect the spatial
variability between the predicting variables and commute
cycling ridership. Further research is needed in terms of
how to improve the goodness-of-fit of the model. One way
for improvement is to include more variables, for exam-
ple, length of separate bike paths or meteorology, to find
out whether many combinations of data can help under-
stand the commute ridership. Another way is to thoroughly
check how different bandwidth of the neighbouring areas
in GWR leads to different results (Comber et al., 2021).

This research had some limitations. First, the Strava data
employed were aggregated at the year level: a finer tempo-
ral resolution would allow for the consideration of daily
time slots and therefore lead to different findings. Ad-
ditionally, this research made no distinction of demo-
graphic characteristics of the users, which would be a valu-
able addition in understanding the levels of over/under-
representation of certain user groups.
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