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Abstract.  Computational power is very important when 

training Deep Learning (DL) models with large amounts 

of data (Wooldridge, 2021).  Hence, High-Performance 

Computing (HPC) can be leveraged to reduce 

computational cost, and the Irish Centre for High-End 

Computing (ICHEC) provides significant infrastructure 

and services for research and development to both 

academia and industry.  A portion of ICHEC's HPC 

system has been allocated for institutional access, and this 

paper presents a case study of how to use Kay (Ireland's 

national supercomputer) in the remote sensing domain. 

Specifically, this study uses clusters of Kay Graphics 

Processing Units (GPUs) for training DL models to 

extract buildings from satellite imagery using a large 

number of input data samples. 

Keywords.  Kay Supercomputer, Machine Learning, 

Deep Learning, Image Processing, GIScience 

1 Introduction 

Machine Learning (ML) is a subset of Artificial 

Intelligence (AI) – in effect, a computational approach to 

train an algorithm (mathematical model) to "learn" how to 

perform specific functions/tasks from large amounts of 

data.  It learns using Artificial Neural Networks (ANN) 

which have proven successful at addressing complex 

problems in many domains, such as weather forecasting 

(Wang et al., 2019), drug discovery (Vamathevan et al. 

2019), business intelligence (Chaturvedi et al., 2017), and 

computer vision (Siau et al., 2018), etc.  Deep Learning 

(DL) is a subfield of ML consisting of multiple inter-

connected hidden layers of "neurons" that takes a group

of weighted inputs, applies an activation function, and

returns an output (Figure 1).

In ML, real-world processes are computationally 

represented by a model trained using features in the data. 

Features are the individual/independent image 

characteristics (e.g. colour, tone, texture, pattern) of an 

object (e.g. tree, building, car, etc.) used to train the ML 

models (Bishop et al., 2006).  Generally, learning 

algorithms require large amounts of data to train, learn 

and ultimately predict accurate outcomes.  The key 

components of ML can be listed as follows; Input Data, 

Features, Training, and subsequent Model. 

Figure 1: Typical DL network architecture to extract buildings 

from a given satellite image.  By adjusting the weights on the 

connections between nodes, "learning" improves.  Modern DL 

networks can contain dozens of hidden layers. 

Raw computational power is another important ML 

component as a lack of sufficient computing power is a 

well-known constraint in AI-related research (Vedovello, 

1998).  Much scientific research is often limited by costly 

computing resources, while having access to High-

Performance Computing (HPC) infrastructure can 

significantly impact research scope and results.  Unlike 

typical academic research computers (e.g. desktop, 

laptop), HPCs take advantage of parallel processing to 

perform calculations much faster (Dennis, 1980).  For AI 

research especially, access to an HPC resource is 

practically imperative to reduce the computational 

time/cost of complex model training using large datasets. 

Accordingly, the Irish Centre for High-End Computing 

(ICHEC) provides HPC infrastructures and services for 

both the academic and industrial research sectors in 

Ireland.  A number of institutions (including TU Dublin) 

are already using Kay (Ireland's national supercomputer) 

infrastructure in their research experiments. 

This paper presents a practical GIScience example 

showing how to make actual use of Ireland's Kay 

supercomputing infrastructure in a research project.  It 
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describes the complete end-to-end workflow from login 

to downloading ANN results using real-world spatial data 

input (raster satellite images and vector maps).  

Additionally, a number of run-time/processing issues 

encountered and solutions adopted are also discussed. 

2 State-of-the-Art Supercomputing 

General-purpose computers (e.g. laptop, desktop) take 

input data, stores it, and generates output using a serial 

processing approach.  Whereas supercomputers 

consisting of larger storage volumes and multiple 

processors can leverage parallel processing to complete 

the same time-intensive computing tasks much faster 

(Dennis, 1980; Murray, 1997).  Instead of processing one 

task at a time, it processes many tasks simultaneously.   

The most common supercomputer operating system (OS) 

is Linux based; an open-source, Unix-like OS.  Since 

supercomputers generally work on scientific problems, 

custom programs have often been written in traditional 

scientific programming languages such as Fortran and 

now in more modern languages such as C, C++, and 

Python. 

A representation of an abstract supercomputer allows for 

understanding its data flow and integrated processes.  

Figure 2 presents a generalised schematic of an abstract 

supercomputer, followed by a description of its key 

components. 

 

 

• Login Nodes:  Login Nodes provide remote 

access to the supercomputer and allow users to 

manage their workflows, source codes, and 

datasets.  Login Nodes are used to submit jobs (a 

unit of work that a job scheduler gives to the 

operating system) to the Compute Nodes via the 

Job Scheduler. 

• Scheduler: When users submit jobs to the 

supercomputer, the job Scheduler feeds the jobs 

into the Compute Nodes.  In effect, the Scheduler 

runs jobs on the Compute Nodes on behalf of the 

user.  The Scheduler is responsible for 

maintaining optimal resources for the 

supercomputer using a job queue.  

• Compute Nodes: Programs run on Compute 

Nodes, and the Scheduler provides access to 

these processers.  To execute tasks efficiently 

(faster and optimally), Compute Nodes consist 

of fast interconnections between the nodes.  

Significant performance improvements are 

achieved by exploiting a parallel processing 

approach. 

• High-Performance Storage: High-

Performance Storage denotes a fast storage 

component residing inside the supercomputer.  

This storage is generally private and not shared 

with other users.   

• Data Mover Nodes:  Data Mover Nodes are 

externally connected servers responsible for 

transferring data to and from High-Performance 

Storage.  Performance of the Data Movers 

depends on distance to and capabilities of the 

other end, plus encryption algorithms and if there 

are any other concurrent transfers taking place. 

Figure 2: Schematic of an abstract supercomputer  

(source: https://icer.msu.edu/sites/default/files/Introductory%20Supercomputing.pdf) 
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2.1 Kay - Ireland's National Supercomputer  

The ICHEC provides the diverse HPC infrastructure 

required for compute intensive research needs in Ireland, 

including the National HPC service 1 , Condominium 

service2, PRACE (Partnership for Advanced Computing 

in Europe) access3, EuroHPC Competence Centre4, and 

Academic Training5.   Condominium access allows for 

academic researchers to use the computing resources of 

the national HPC system.  Many third-level institutions, 

including TU Dublin, are already registered with the 

Condominium Service, and research students can contact 

their local Access Contact Point to gain access to the HPC 

system.   

Kay is the name given to the primary high-performance 

supercomputer provided by ICHEC.  It can execute high 

computation/memory-intensive processes in fields such 

as biomedical research, drug discovery, nanotechnology, 

genomics and, in particular to this case study, GIScience.  

In order to support such varied research domains, Kay has 

a wide range of scientific APIs, compilers, and 

development libraries - known as modules.  Table 1 shows 

the list of modules used in the experiments presented in 

this paper. 

Table 1: List of modules used in GIScience experiments. 

Package Name Description 

CUDA Toolkit 

The CUDA toolkit provides a 

development environment for 

implementing, optimising and debugging 

GPU-accelerated applications with 

NVIDIA GPUs.   

GCC 

The GNU Compiler Collection (GCC) 

includes compilers (e.g. C, C++) and 

supporting libraries (e.g. libstdc++) 

provided by GNU. 

Intel 
Compiler 

The Intel compiler icc/icpc/ifortran is the 

flagship C/C++/Fortran compiler from 

Intel. 

Python/ 
Conda 

Kay provides Python programming 

interpreters to use in experiments.  Conda 

is an open-source package and 

environment management system. 

Briefly, Kay is comprised of five major components 

having different process-specific capabilities.  Table 2 

summarises the details of each component. 

Table 2: List of major Kay components. 

Name of 

component 
Description 

Cluster 

A cluster of 336 nodes where each node has 

2x20-core 2.4 GHz Intel Xeon Gold 6148 

(Skylake) processors, 192 GiB of RAM, a 

400 GiB local SSD for scratch space and a 

100Gbit OmniPath network adaptor. 

                                                           
1 https://www.ichec.ie/academic/national-hpc  
2 https://www.ichec.ie/academic/condominium-service  
3 https://www.ichec.ie/academic/prace-access  

GPU 

A partition of 16 nodes with the same 

specification as above, plus 2x NVIDIA 

Tesla V100 16GB PCIe (Volta 

architecture) GPUs on each node. Each 

GPU has 5,120 CUDA cores and 640 

Tensor Cores. 

Phi 

A partition of 16 nodes, each containing a 

self-hosted Intel Xeon Phi Processor 7210 

(Knights Landing or KNL architecture) 

with 64 cores @ 1.3 GHz, 192 GiB RAM 

and a 400 GiB local SSD for scratch space. 

High Memory 

A set of 6 nodes each containing 1.5 TiB of 

RAM, 2x20-core 2.4 GHz Intel Xeon Gold 

6148 (Skylake) processors and 1 TiB of 

dedicated local SSD for scratch storage. 

Service & 

Storage 

A set of service and administrative nodes to 

provide user login, batch scheduling, 

management, networking, etc. 

A large, fast storage facility is essential because deep 

learning projects depend on large data volumes.  Briefly, 

Kay provides Home storage to store personal files and 

source code and Work storage to store, in our case, the 

datasets used for DL model training.  Table 3 summarises 

the properties of each type of storage. 

Table 3: Data storage areas of Kay 

Property Home Work 

Purpose Store source code Store datasets 

Path 
/ichec/home/users/ 

<username> 

/ichec/work/<cond

ominium_name> 

Capacity 25 GB Larger Limit 

Access 
Permission 

Only to user 
All users in the 

condominium 

2.1.1 Kay's Processing Workflow 

The processing workflow of Kay can be described in four 

primary phases, and progressing through each of these is 

essential to complete any task successfully.  If any one of 

these phases fail, the user will not get the desired output.  

First, the user must submit their job via the SLURM 

(Simple Linux Utility for Resource Management) script 

file and the input data to the SLURM workload manager.  

The SLURM workload manager is an open-source job 

scheduler for supercomputers and is responsible for 

managing the processing workflows in Kay.  The 

submitted job then passes to Kay's central processing unit, 

also known as the compute nodes.  Users don't have direct 

access to this part.  Once the job is completed, the output 

files are sent to the workload manager where SLURM 

sends the output files to the specific user.  The cost of the 

compute task is calculated and added to the user's account 

appropriately.  An overview of the processing workflow 

is illustrated in Figure 3. 

4 https://www.ichec.ie/eurocc-eurohpc-competence-centre-initiative  
5 https://www.ichec.ie/academic/training-education  
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Figure 3: Overview of Kay's processing workflow. 

2.2 Mask R-CNN for Building Extraction 

Mask R-CNN is a well-known Deep Learning technique 

applied to instance segmentation problems (e.g. building 

extraction) in the image processing domain (He et al., 

2017).  Instance segmentation has also been extended to 

various other applications such as object detection in 

videos, reconstructing 3D buildings from aerial LiDAR, 

and even directing surgery robots.  Specific to our spatial 

change detection problem (i.e. detecting changes in raster 

images when compared to the current state of 

OpenStreetMap vector data), it is feasible to use Mask R-

CNN instance segmentation results.  Therefore, Mask R-

CNN models were trained to extract buildings from a 

given satellite image, and the predictions were then 

processed to identify any changes in the OSM maps. 

Among the many implementations of Mask R-CNN, this 

study is based on the Mask R-CNN tool implemented by 

Matterport Inc. (Abdulla, 2017).  In addition, Python3, 

TensorFlow, and Keras APIs were used to integrate the 

Mask R-CNN tool.  The Mask R-CNN implementation is 

built on the Feature Pyramid Network (FPN) (Lin et al., 

2017) and a ResNet1016  backbone.  Three layers (i.e. 

heads, 4+, and all) should be trained to obtain a complete 

model.  Training heads involves training a network head 

layer, 4+ training denotes finetuning layers from ResNet 

Stage 4 and above, and finally, training all layers indicates 

finetuning all layers of the model with MS COCO datasets 

(Lin et al., 2014). 

2.3 Generative Adversarial Networks for Spatial 

Change Detection (OSM-GAN) 

Many different image processing techniques are used for 

temporal change detection in images, such as Markov 

random fields (Gong et al., 2013), principal component 

analysis (Yousif and Ban, 2013), and CNN based 

difference image approach (Jong et al., 2019).  However, 

Each of the techniques mentioned above have their own 

limitations, for example, low performance, low 

segmentation accuracy, higher time complexity, etc.  With 

                                                           
6https://www.tensorflow.org/api_docs/python/tf/keras/applications/resn

et/ResNet101  

relevant to Generative Adversarial Networks, previous 

studies applied various image processing techniques for 

seasonal change detection (Lebedev et al., 2018), heat-

map generation (Albrecht et al., 2020), and image 

classification (de Jong et al., 2019).  Inspired by this work, 

our OSM-GAN approach applies a spatial change 

detection methodology that uses spatial imagery (satellite 

images) and OSM vector data (Niroshan and Carswell, 

2022a) to train its models.  It uses a Generative 

Adversarial Network (GAN) (Isola et al., 2017) to 

generate binary feature-maps (i.e. a black&white image 

that represents particular map features (e.g. buildings) as 

white blobs) for a given satellite image.  Then the 

prediction is post-processed to extract any changes (new 

or modified buildings).  Results show that OSM-GAN 

deep learning models can perform a satellite image to 

feature-map translation with a high confidence level 

(Niroshan and Carswell, 2022a). 

3 Machine Learning with Kay 

Researchers need a user account on the ICHEC system 

before submitting a job to Kay.  Once the account is 

approved, users then join an existing project, apply for 

their own National Service project, or request access 

through an institution Condominium (HPC, 2020).  All the 

use-cases in this paper were tested using the TU Dublin 

condominium access to Kay.   Figure 4 illustrates the next 

steps to follow after successfully logging into the Kay 

Supercomputer, and the steps are further described using 

a real-world image processing case study. 

 

Figure 4: The main steps to submitting a successful batch job 

after logging into Kay.  The dotted line path indicates optional 

steps. 

3.1 Log in 

Users must configure an SSH security key on the local 

device to remotely access Kay.  First, the SSH keys 

(private and public) need to be generated on the computer 

used to connect to Kay.  Second, the public key needs to 

be sent to support@ichec.ie from the registered email, and 

the ICHEC team will copy it to a suitable place; most 

importantly, the private key should not be sent or shared.   
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Once users set up the SSH key, users can log into Kay 

using an SSH7 remote connection.  The SSH key, ICHEC 

username and password are then used to initiate an SSH 

session into Kay's login node.  Users can use any preferred 

command-line interface (CLI) to execute commands (e.g. 

windows PowerShell, command prompt, Linux Bash).  A 

screenshot after successful login is illustrated in Figure 5. 

ssh <username>@kay.ichec.ie -i <path for the 

private key> 

 

Figure 5: The terminal view of Kay's login node. 

3.2  Upload Required Data and Codes 

The SCP8 CLI application was used to upload source code 

and other relevant data in our experiments; however, Kay 

supports both SCP and SFTP file transfer applications.  

The required files were compressed before uploading to 

Kay using the following command.  This compression 

step helps to avoid missing any files, especially when 

uploading source code.  The following commands were 

used for compression and uploading operations. 

• Compression of the source code directory 

zip -q -r <filename>.zip <directory name> 

• Upload the compressed file 

scp -i <private_key> <local file path>  

<username>@kay.ichec.ie:<remote file path> 

3.3 Modules 

Modules provide extra functionality and services to assist 

users to build flexible applications.  They allow access to 

specific software, compilers, and libraries used for 

scientific experiments.  Kay consists of different versions 

of modules, which allows users to prevent dependency 

errors.  For example, different versions of the Anaconda 

package manager are available to use with different 

versions of Python programs.  Modules should be loaded 

within the SLURM script, which will appear in the 

compute nodes.  The most useful commands related to 

modules are listed in Table 4. 

 

                                                           
7 https://linux.die.net/man/1/ssh 

Table 4: List of commands to manage modules in Kay 

Command Description Example 

module av 
shows modules 

available in the system. 
 

module load 

<name> 

loads specified  

modules 

module load 

conda 

module unload 

<name> 

unloads specified  

modules 

module 

unload conda 

module list 
lists all modules  

currently loaded 
 

module purge unload all modules  

3.4 The Submission Script/SLURM script 

A submission script is a shell script that includes all the 

configurations (SLURM directives) and steps of the job.  

Since Kay manages compute-intensive workloads using 

the SLURM workload manager, users must submit batch 

jobs through submission scripts.  The SLURM workload 

manager optimally allocates "compute nodes" for a user's 

jobs.  Therefore, submission scripts for our experiments 

were prepared using the following steps.  A sample 

screenshot of the submission script is shown in Figure 6. 

• Create a submission script. 
touch <job_name>.sh 

• Edit the submission script to add instructions of 

the job. 
nano <job_name>.sh 

or 

vim <job_name>.sh 

 

Figure 6: A sample of the submission script.  The script accepts 

Linux commands and SLURM directives.  SLURM directives 

must be prefixed by #SBATCH.  This script requires 2 hours of 

processing time on two compute nodes in the GPU queue.  Also, 

it asks to send an email at the beginning and end of the job. 

Although the submission script accepts Linux commands, 

the SLURM directives must be included to define the 

essential parameters and configurations.  A list of 

important SLURM directives is listed in Table 5. 

 

 

  

8 https://www.unix.com/man-page/linux/1/scp/  
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Table 5: List of SLURM directives used in submission scripts. 

Purpose 
#SBATCH 

option 
Example 

Specify queue 

to run the job 
-p queuename #SBATCH -p GpuQ 

Specify account 

of the user 

-A 

accountname 

#SBATCH -A 

sample_user 

Define number 

of nodes to 

allocate for job 

-N number or -

-

nodes=number 

#SBATCH --nodes=2 

Indicate email 

address 

--mail-

user=email 

address 

#SBATCH --mail-

user=user@email.ie 

Send email 

when job starts 

--mail-

type=BEGIN 

#SBATCH --mail-

type=BEGIN 

Send email 

when job ends 

--mail-

type=END 

#SBATCH --mail-

type=END 

Specify job 

name 

--job-

name=jobname 

#SBATCH --job-

name=experiment_oo1 

3.5 Job Submission 

We used separate submission scripts for each experiment 

as an error reduction technique.  Once the submission 

script is completed, it is submitted to the workload 

manager using the "sbatch" command.  This command 

accepts a single command-line argument - the submission 

script path.  The shell command can be presented as 

follow. 

sbatch <submission_script_name>.sh 

This command queues the submitted job into the job 

queue, and the workload scheduler assigns the requested 

resources for the task.  The SLURM workload manager 

consists of a useful set of commands that supports 

additional controls and for obtaining more information 

about the submitted jobs (Table 6).  A complete set of 

commands are listed on the ICHEC website9. 

Table 6: Commonly used SLURM commands in the 

experiments. 

Command Description Example 

sinfo 
list details about queues and 

partitions 
sinfo 

squeue 

return a list of queued jobs. squeue 

show information of user's 

jobs 

squeue -u 

$USER 

mybalance 
show summary of core hour 

balance of the account 
mybalance 

4 Geospatial Use Cases 

This section describes how to use the Kay supercomputer 

to train DL models for spatial image change detection 

applications.  First, a Mask R-CNN based building 

extraction model, implemented using TensorFlow, was 

                                                           
9 https://www.ichec.ie/academic/national-hpc/documentation/slurm-
commands 

  

trained.  Second, a PyTorch based GAN model (i.e. OSM-

GAN) was trained to detect any spatial changes.  These 

scenarios included a number of experiments to build 

several models using different datasets. 

4.1 Training Mask R-CNN models on Kay 

A north inner-city area around TU Dublin was selected to 

make training data for the Mask R-CNN experiments.  

Google Earth satellite images and corresponding 

OpenStreetMap (OSM) building footprint data in this area 

were mined using customised data crawlers to create the 

datasets required for DL model training.  Since OSM 

vector data is in GeoJSON format (a standard format for 

encoding map features), the data was converted into 

binary .png image format to distinguish the building edges 

easily.  A training dataset directory consists of a satellite 

image (.jpg format) and all affiliated building footprints 

in individually separated binary images.   

Several datasets (based on varying resolution/zoom 

levels) were composed using the previously mentioned 

crawlers.  The images (satellite images, associated 

building footprints) were 768x768 pixels in size.  Each 

dataset is split into two parts: 75% for training and 25% 

for validation.  Table 7 summarises the statistics of each 

dataset, and Figure 7 illustrates an instance of a dataset. 

Two pyramid-based training approaches (low-to-high 

resolution and high-to-low resolution) were evaluated to 

find the best strategy for identifying buildings in satellite 

images.  Transfer learning is the core idea behind this 

training approach – this means several datasets and 

training sessions were used to build a single model and 

the final model comprises the knowledge of all 

intermediate models.   

Table 7: Datasets used in Mask R-CNN Kay experiments. 

 
Dataset 

1 2 3 4 5 

Raster  

Resource Google Earth 

Vector  

Resource OSM 

Resolution 2m 1m 50cm 30cm 15cm 

Zoom Level 16 17 18 19 20 

Number of  

satellite  

images 

234 315 1080 4416 17178 

Average of 

building 

footprints 

546 324 93 21 9 
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Figure 7: A data sample used in Mask R-CNN experiments.  

Each separated feature image (left) and the satellite image (right) 

are 256x256 pixels in size.  All images are stored separately. 

Both models were trained using five datasets.  On a typical 

"gamer spec" GPU-enabled laptop (NVIDIA® GeForce 

RTX™ 2060), a total training time of 2084 minutes 

(approximately 35 hours) was needed to train a Mask R-

CNN model with 3389 data samples.  The total training 

time can be split up into 266 minutes, 595 minutes, and 

1223 minutes for heads, 4+, and all layers training times 

respectively.   

A Low-to-High pyramid model implies training a model 

starting from a dataset with the lowest resolution, and step 

by step, increments the training dataset with subsequent 

higher resolution images.  For instance, Dataset 1 (2m 

resolution) was used to train the first model; then, this 

model was used as the source model for the next training 

stage with Dataset 2.  Similarly, subsequent datasets were 

used to train the other intermediate models.  Finally, the 

final model was obtained after training the 4th 

intermediate model using a dataset having the highest 

resolution (Dataset 5).  A High-to-Low pyramid model 

follows the reverse training sequence of the Low-to-High 

pyramid model (i.e. the training process starts with a 

dataset having the highest resolution).   

Each dataset and source code were compressed and 

uploaded to Kay using zip and scp commands. 

• Compression command 
zip -r dataset_16.zip data_16 

• Uploading command 
scp -i ~/id_ed25519 ./dataset_16.zip 

abc@kay.ichec.ie:/ichec/work/xyz/abc/data 

Where: abc=username and xyz=condominium name  

The following submission script was used to submit a 

batch job to Kay after uploading the datasets and the 

source code. 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

 

#!/bin/sh 

#SBATCH --time=05:00:00 

#SBATCH --nodes=2 

#SBATCH -A abcd 

#SBATCH -p GpuQ 

#SBATCH --mail-user= user@email.ie 

#SBATCH --mail-type=BEGIN,END 

#SBATCH --job-name=H2L_16 

module load cuda/10.1.243 gcc conda 

intel/2019u5 

10: 

 

 

11: 

 

 

 

12: 

13: 

 

14: 

 15: 

export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ichec/packag

es/conda/2/pkgs/cudnn-7.6.0-cuda10.1_0/lib 

export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ichec/packag

es/conda/2/envs/cpu_tf1.14_torch1.1_hvd0.16/li

b/ 

conda activate mrcnn_tf2 

WORKING_DIR=/ichec/home/users/user_name/DeepMa

pper/DNN 

cd $WORKING_DIR 

python -u train.py -d ./data/16 

The following section describes the functionality of each 

statement above: 

Line 1. When a script starts with a hashbang (#!), the 

program loader parses the rest of the program/script 

to a specified program in Unix-like Operating 

Systems.  For instance, in this submission script, the 

program loader is instructed to use the /bin/sh 

program instead of any other. 

Line 2. SLURM directive '#SBATCH --time' indicates 

the time required for the job.  This configuration will 

stop the task once the time is up, even though the task 

is not completed. 

Line 3. This SLURM directive is used to request the 

number of compute nodes. 

Line 4. '#SBATCH -A' indicates the account name that 

needs to be charged for the task. 

Line 5. This statement indicates the job queue required 

to execute the task.  For instance, GpuQ was applied 

since we chose the GPU queue to run the training 

process. 

Line 6. '--mail-user' SLURM directive defines the email 

address where task updates should be sent.  Note that, 

after '=' sign, users have to insert their preferred email 

address. 

Line 7. We used both email options to get notification 

emails when the task starts and ends. 

Line 8. This assigns a name for the job, which can be 

used to search for job details later on.  For example, 

the 'sinfo -j H2L_16' command is used to extract 

information about the above task. 

Line 9. This statement is used to load modules required 

for the task, such as, 

• cuda/10.1.243  

• gcc  

• conda and 

• intel/2019u5 

Line 10.  This statement links compatible cuDNN and 

CUDA libraries with the task. 

Line 11.  Appropriate TensorFlow libraries were linked 

using this bash statement. 

Line 12.  'conda activate mrcnn-tf2' command activates 

the suitable Python environment for the task.  For 

example, mrcnn-tf2 is the suitable environment for 

the code. 
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Line 13.  This command initiates an environment variable 

for the working directory containing the source code 

of the task. 

Line 14.  'cd' command is used to change the current 

working directory in Unix-like Operating Systems. 

Line 15. This command executes the training process 

stored in train.py. 

The submission script to the SLURM workload manager 

using the sbatch command is shown below. 
sbatch train_H2L_16.sh 

An email was received when the task was started, then the 

sinfo and squeue commands were used to monitor the job.  

Also, a notification was received when the training 

process was completed.  Even when a job fails, errors are 

notified by email and the job's standard output (stdout) is 

stored in the home directory to resolve any issues.  Linux 

commands "cat" and "tail" can be used for this purpose. 
cat ~/slurm-823528.out 

tail -n 10 ~/ slurm-823528.out 

Finally, the SCP command is used to download the trained 

models and other files (e.g., log files, temporary models, 

and testing outputs). 
scp -i ~\id_ed25519 

abc@kay.ichec.ie:/ichec/work/xyz/abc/mod

els/H2L_16.zip ~\Desktop\ 

The steps mentioned above are repeated until both 

pyramid models are trained using all five datasets to 

obtain the final models.  The time taken for each training 

stage of each dataset is listed below (Table 8).  The third 

intermediate model from the High-to-Low feature 

pyramid approach with 30cm/pixel images achieved the 

best qualitative prediction results.  However, since Mask 

R-CNN modelling was not deemed accurate enough for 

predicting spatial changes, an improved method of object 

detection and segmentation based on Generative 

Adversarial Networks (OSM-GAN) was proposed next. 

Table 8: Comparison of training times for Low-to-High Mask 

R-CNN model. 

Dataset Resolution 
Training 

Times (h:m:s) 

Time Quota for layers 

(seconds) 

heads 4+ all 

1 2 m 05:00:19 3314.90 6138.98 8565.12 

2 1 m 04:16:07 2328.43 4725.16 8313.41 

3 50 cm 03:01:03 1249.74 2968.89 6644.37 

4 30 cm 01:47:18 866.89 1928.70 3642.40 

5 15 cm 01:27:12 599.41 1690.27 2942.33 

4.2 Training OSM-GAN models using Kay 

A vector data crawler is first used to mine for applicable 

OSM vectors (saved in GeoJSON format).  Additionally, 

OSi building footprint vectors are also processed and 

segmented into GeoJSON files.  These two vector data 

sources are used for OSM-GAN model training and 

change detection processes.  The separated GeoJSON 

objects are then translated to binary images (white pixels 

represent buildings, black pixels represent the 

background) and stored in separate directories based on 

their ground coordinates.  The binary images are merged 

into a single 256x256 pixel-sized image using a merging 

process.  Two different bit depths (24-bit colour and 8-bit 

greyscale) and various pixel resolutions were used to train 

the models.  As a result, the following experiments 

evaluated sixteen OSM-GAN models in total.  Figure 8 

presents a single training sample of the OSM-GAN 

dataset created using a Google Earth satellite image and 

OSM building footprints. 

 

Figure 8: A data sample from the OSM-GAN training dataset.  

The left side is the input Google satellite image – the right side 

is a binary image of the current OSM building footprint (feature-

map) of the area. 

As in the previous experiments, datasets were produced 

on a laptop and then compressed and uploaded to Kay 

using the following commands. 
zip -r ./dataset_1.zip ./google_osm_data 

scp -i ~/id_ed25519 ./dataset_1.zip 

abc@kay.ichec.ie:/ichec/work/xyz/abc/osm

_gan/data 

Next, a submission script for the training task is created 

and submitted to the SLURM workload manager.  Below 

is the submission script used in this experiment. 
1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

 

10: 

 

 

11: 

12: 

 

13: 

12: 

 

 

 

 

#!/bin/sh 

#SBATCH --time=02:00:00 

#SBATCH --nodes=2 

#SBATCH -A condominium_name 

#SBATCH -p GpuQ 

#SBATCH --mail-user=xxxxx@yyyy.ie 

#SBATCH --mail-type=BEGIN,END 

#SBATCH --job-name=OSM_GAN_T1 

module load cuda/10.1.243 gcc conda 

intel/2019u5 

export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ichec/packag

es/conda/2/pkgs/cudnn-7.6.0-cuda10.1_0/lib 

conda activate torch 

WORKING_DIR==/ichec/work/condominium_name/user

name/osm-gan 

cd $WORKING_DIR 

python -u train.py --dataroot 

../data/Google_OSi_24bit_z19/ --name 

Google_OSi_24bit_z19 --model pix2pix  --

direction AtoB --save_epoch_freq 50 
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The script is then submitted to SLURM Workload 

Manager to begin the DL model training process.  Once 

processing is complete, the final outputs are downloaded 

to the local computer for prediction purposes.   

Notably, the OSM-GAN model trained with 24-bit, 30cm 

Google Earth imagery and OSM building footprints 

scored the highest accuracy (88.4%).  A post-analysis of 

all OSM-GAN model prediction results can be found in 

(Niroshan and Carswell, 2022b). 

5 Common Problems and Solutions  

This section presents some issues encountered during Kay 

experiments and how ICHEC advised to resolve these 

issues. 

P1. Home storage was exceeded during DL experiments. 

Temporary files created during experiments can 

exceed the default storage size of 25GB.  Especially 

when Anaconda10 is used to manage packages for the 

Python-based code, the conda11 environment creates 

large files in the home storage. 

S1. Removing unnecessary conda environments.  The 

"du -sh ~/.conda/envs" command provides a 

breakdown of the storage cost for each conda 

environment.  Then it is straightforward to determine 

which environment/packages need to be removed.  

The following commands can be used to manage 

conda environments. 

• Remove a conda environment 
conda remove --name <env name> –all 

• Viewing a list of installed packages 
conda list -n <env name> 

• Remove a package from a conda environment 
conda remove -n <env name> <package name> 

P2. LD_LIBRARY_PATH is the predefined environment 

variable in Linux/Unix which sets the path for the 

linker when linking dynamic libraries or shared 

libraries.  If LD_LIBRARY_PATH is not defined, 

the program will not execute successfully.   

S2. Add LD_LIBRARY_PATH environment variable to 

the submission script.  The best way to use 

LD_LIBRARY_PATH is to export the path after 

modules are loaded.  The following statement can be 

used to set paths for cuDNN and CUDA: 
Export 

LD_LIBRARY_PATH=$LD_LBRARY_PATH:/ichec/p

ackages/conda/2/pkgs/cudnn-7.6.0-

cuda10.1_0/lib 

P3. Conflicts between CUDA and cuDNN versions. 

                                                           
10 https://www.anaconda.com/open-source  
11 https://docs.conda.io/projects/conda/en/latest/user-

guide/tasks/manage-environments.html   

The CUDA Deep Neural Network (cuDNN) library 

is a GPU-accelerated library of primitives for deep 

neural networks (DNN).  It provides implementations 

for standard DL functions such as forward and 

backward convolution, pooling, normalisation, and 

activation layers.  CUDA is a parallel computing 

platform that uses the GPU for general-purpose 

computing tasks.  When a mismatched CUDA and 

cuDNN are imported, the program will not execute 

correctly.  For example, cuDNN v7.6.0 cannot be 

used with CUDA 11.2, but it can be used with CUDA 

10.1. 

S3. Managing CUDA and cuDNN versions carefully. 

cuDNN support matrix 12  and cuDNN archive 13 

provide comprehensive details on reducing CUDA 

and cuDNN conflicts.  Download setup files into the 

local computer after choosing the suitable CUDA and 

cuDNN versions (downloading process requires 

NVIDIA membership).  Then use SCP command to 

upload the setup file into Kay. 

P4. Create a conda environment on Kay. 

S4. Follow the steps below to create a conda 

environment. 
module load conda 

conda create -n envAI python=3.7 

conda info --envs  

source activate envAI 

conda install tensorflow-gpu  

P5. The working storage was overloaded during the 

training process.  The intermediate outcomes of the 

Deep Learning process exceeded the memory limit, 

and the process stopped.  These files cannot be 

deleted manually as they are created in a short period 

of time.  

S5. A directory watching program was developed and 

executed in the login node to remove intermediate 

output files if necessary.  After submitting the job to 

the SLURM workload manager, this program was 

executed on the login node.  

6 Conclusions 

Supercomputers offer a powerful computing platform for 

scientific discovery in many fields.  The advances in AI 

and DL algorithms in particular remind us that the use of 

common desktop/laptop research computers is no longer 

enough to accomplish (efficiently) many modern 

compute-intensive problems. 

This paper presented a practical use of the Kay 

supercomputer in GIScience research.  The demonstrated 

12 https://docs.nvidia.com/deeplearning/cudnn/support-
matrix/index.html  
13 https://developer.nvidia.com/rdp/cudnn-archive  
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image processing use-cases required CUDA support to 

train its models – a process that took days to complete on 

a traditional laptop with a single GPU.  The use of Kay 

significantly reduced training times from days to hours 

(Table 8).  In comparison, training a Mask R-CNN model 

on a single NVIDIA Ge-Force RTX 2060 GPU (typical 

"gamer spec" laptop) took 35.5 hours (~1.5 days).  As 

such, Kay helped enormously when conducting multiple 

experiments using different image datasets/resolutions 

and DL model parameter variations. 

Also discussed were some practical run-time issues that 

could arise when running jobs on Kay.  The ICHEC 

provides an excellent user support mechanism, well-

documented user guides and tutorials, and additional 

online events for further consultations with users. 

Data and Software 

Google Earth satellite images and OSi orthophotos were 

used with OSM vector data to train and validate Deep 

Learning models in these experiments.  Sections 4.1 and 

4.2 explicitly describe the relevant data resources and how 

they were prepared.  Google (raster images) and OSM 

(vector footprints) data crawlers can be accessed in the 

GitHub repository:  

https://github.com/Lasith-Niro/DeepMapper-Backend.   

From a software perspective, Python-based Mask-RCNN 

and Generative Adversarial Network implementations 

were used in the experiments.  SLURM scripts used by 

Kay are published in the following GitHub repository: 

https://github.com/Lasith-Niro/kay_scripts  
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