
Machine Learning with Kay

Lasith Niroshan and James D. Carswell

Technological University Dublin, Ireland

Correspondence: Lasith Niroshan (d19126805@mytudublin.ie)

Abstract. Computational power is very important when

training Deep Learning (DL) models with large amounts

of data (Wooldridge, 2021). Hence, High-Performance

Computing (HPC) can be leveraged to reduce

computational cost, and the Irish Centre for High-End

Computing (ICHEC) provides significant infrastructure

and services for research and development to both

academia and industry. A portion of ICHEC's HPC

system has been allocated for institutional access, and this

paper presents a case study of how to use Kay (Ireland's

national supercomputer) in the remote sensing domain.

Specifically, this study uses clusters of Kay Graphics

Processing Units (GPUs) for training DL models to

extract buildings from satellite imagery using a large

number of input data samples.

Keywords. Kay Supercomputer, Machine Learning,

Deep Learning, Image Processing, GIScience

1 Introduction

Machine Learning (ML) is a subset of Artificial

Intelligence (AI) – in effect, a computational approach to

train an algorithm (mathematical model) to "learn" how to

perform specific functions/tasks from large amounts of

data. It learns using Artificial Neural Networks (ANN)

which have proven successful at addressing complex

problems in many domains, such as weather forecasting

(Wang et al., 2019), drug discovery (Vamathevan et al.

2019), business intelligence (Chaturvedi et al., 2017), and

computer vision (Siau et al., 2018), etc. Deep Learning

(DL) is a subfield of ML consisting of multiple inter-

connected hidden layers of "neurons" that takes a group

of weighted inputs, applies an activation function, and

returns an output (Figure 1).

In ML, real-world processes are computationally

represented by a model trained using features in the data.

Features are the individual/independent image

characteristics (e.g. colour, tone, texture, pattern) of an

object (e.g. tree, building, car, etc.) used to train the ML

models (Bishop et al., 2006). Generally, learning

algorithms require large amounts of data to train, learn

and ultimately predict accurate outcomes. The key

components of ML can be listed as follows; Input Data,

Features, Training, and subsequent Model.

Figure 1: Typical DL network architecture to extract buildings

from a given satellite image. By adjusting the weights on the

connections between nodes, "learning" improves. Modern DL

networks can contain dozens of hidden layers.

Raw computational power is another important ML

component as a lack of sufficient computing power is a

well-known constraint in AI-related research (Vedovello,

1998). Much scientific research is often limited by costly

computing resources, while having access to High-

Performance Computing (HPC) infrastructure can

significantly impact research scope and results. Unlike

typical academic research computers (e.g. desktop,

laptop), HPCs take advantage of parallel processing to

perform calculations much faster (Dennis, 1980). For AI

research especially, access to an HPC resource is

practically imperative to reduce the computational

time/cost of complex model training using large datasets.

Accordingly, the Irish Centre for High-End Computing

(ICHEC) provides HPC infrastructures and services for

both the academic and industrial research sectors in

Ireland. A number of institutions (including TU Dublin)

are already using Kay (Ireland's national supercomputer)

infrastructure in their research experiments.

This paper presents a practical GIScience example

showing how to make actual use of Ireland's Kay

supercomputing infrastructure in a research project. It

AGILE: GIScience Series, 3, 11, 2022. https://doi.org/10.5194/agile-giss-3-11-2022
Proceedings of the 25th AGILE Conference on Geographic Information Science, 2022.
Editors: E. Parseliunas, A. Mansourian, P. Partsinevelos, and J. Suziedelyte-Visockiene.
This contribution underwent peer review based on a full paper submission.
© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

1 of 11

https://orcid.org/0000-0002-9868-8338
https://orcid.org/0000-0002-4766-7297
mailto:d19126805@mytudublin.ie

describes the complete end-to-end workflow from login

to downloading ANN results using real-world spatial data

input (raster satellite images and vector maps).

Additionally, a number of run-time/processing issues

encountered and solutions adopted are also discussed.

2 State-of-the-Art Supercomputing

General-purpose computers (e.g. laptop, desktop) take

input data, stores it, and generates output using a serial

processing approach. Whereas supercomputers

consisting of larger storage volumes and multiple

processors can leverage parallel processing to complete

the same time-intensive computing tasks much faster

(Dennis, 1980; Murray, 1997). Instead of processing one

task at a time, it processes many tasks simultaneously.

The most common supercomputer operating system (OS)

is Linux based; an open-source, Unix-like OS. Since

supercomputers generally work on scientific problems,

custom programs have often been written in traditional

scientific programming languages such as Fortran and

now in more modern languages such as C, C++, and

Python.

A representation of an abstract supercomputer allows for

understanding its data flow and integrated processes.

Figure 2 presents a generalised schematic of an abstract

supercomputer, followed by a description of its key

components.

• Login Nodes: Login Nodes provide remote

access to the supercomputer and allow users to

manage their workflows, source codes, and

datasets. Login Nodes are used to submit jobs (a

unit of work that a job scheduler gives to the

operating system) to the Compute Nodes via the

Job Scheduler.

• Scheduler: When users submit jobs to the

supercomputer, the job Scheduler feeds the jobs

into the Compute Nodes. In effect, the Scheduler

runs jobs on the Compute Nodes on behalf of the

user. The Scheduler is responsible for

maintaining optimal resources for the

supercomputer using a job queue.

• Compute Nodes: Programs run on Compute

Nodes, and the Scheduler provides access to

these processers. To execute tasks efficiently

(faster and optimally), Compute Nodes consist

of fast interconnections between the nodes.

Significant performance improvements are

achieved by exploiting a parallel processing

approach.

• High-Performance Storage: High-

Performance Storage denotes a fast storage

component residing inside the supercomputer.

This storage is generally private and not shared

with other users.

• Data Mover Nodes: Data Mover Nodes are

externally connected servers responsible for

transferring data to and from High-Performance

Storage. Performance of the Data Movers

depends on distance to and capabilities of the

other end, plus encryption algorithms and if there

are any other concurrent transfers taking place.

Figure 2: Schematic of an abstract supercomputer

(source: https://icer.msu.edu/sites/default/files/Introductory%20Supercomputing.pdf)

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 2 of 11

https://icer.msu.edu/sites/default/files/Introductory%20Supercomputing.pdf

2.1 Kay - Ireland's National Supercomputer

The ICHEC provides the diverse HPC infrastructure

required for compute intensive research needs in Ireland,

including the National HPC service 1 , Condominium

service2, PRACE (Partnership for Advanced Computing

in Europe) access3, EuroHPC Competence Centre4, and

Academic Training5. Condominium access allows for

academic researchers to use the computing resources of

the national HPC system. Many third-level institutions,

including TU Dublin, are already registered with the

Condominium Service, and research students can contact

their local Access Contact Point to gain access to the HPC

system.

Kay is the name given to the primary high-performance

supercomputer provided by ICHEC. It can execute high

computation/memory-intensive processes in fields such

as biomedical research, drug discovery, nanotechnology,

genomics and, in particular to this case study, GIScience.

In order to support such varied research domains, Kay has

a wide range of scientific APIs, compilers, and

development libraries - known as modules. Table 1 shows

the list of modules used in the experiments presented in

this paper.

Table 1: List of modules used in GIScience experiments.

Package Name Description

CUDA Toolkit

The CUDA toolkit provides a

development environment for

implementing, optimising and debugging

GPU-accelerated applications with

NVIDIA GPUs.

GCC

The GNU Compiler Collection (GCC)

includes compilers (e.g. C, C++) and

supporting libraries (e.g. libstdc++)

provided by GNU.

Intel
Compiler

The Intel compiler icc/icpc/ifortran is the

flagship C/C++/Fortran compiler from

Intel.

Python/
Conda

Kay provides Python programming

interpreters to use in experiments. Conda

is an open-source package and

environment management system.

Briefly, Kay is comprised of five major components

having different process-specific capabilities. Table 2

summarises the details of each component.

Table 2: List of major Kay components.

Name of

component
Description

Cluster

A cluster of 336 nodes where each node has

2x20-core 2.4 GHz Intel Xeon Gold 6148

(Skylake) processors, 192 GiB of RAM, a

400 GiB local SSD for scratch space and a

100Gbit OmniPath network adaptor.

1 https://www.ichec.ie/academic/national-hpc
2 https://www.ichec.ie/academic/condominium-service
3 https://www.ichec.ie/academic/prace-access

GPU

A partition of 16 nodes with the same

specification as above, plus 2x NVIDIA

Tesla V100 16GB PCIe (Volta

architecture) GPUs on each node. Each

GPU has 5,120 CUDA cores and 640

Tensor Cores.

Phi

A partition of 16 nodes, each containing a

self-hosted Intel Xeon Phi Processor 7210

(Knights Landing or KNL architecture)

with 64 cores @ 1.3 GHz, 192 GiB RAM

and a 400 GiB local SSD for scratch space.

High Memory

A set of 6 nodes each containing 1.5 TiB of

RAM, 2x20-core 2.4 GHz Intel Xeon Gold

6148 (Skylake) processors and 1 TiB of

dedicated local SSD for scratch storage.

Service &

Storage

A set of service and administrative nodes to

provide user login, batch scheduling,

management, networking, etc.

A large, fast storage facility is essential because deep

learning projects depend on large data volumes. Briefly,

Kay provides Home storage to store personal files and

source code and Work storage to store, in our case, the

datasets used for DL model training. Table 3 summarises

the properties of each type of storage.

Table 3: Data storage areas of Kay

Property Home Work

Purpose Store source code Store datasets

Path
/ichec/home/users/

<username>

/ichec/work/<cond

ominium_name>

Capacity 25 GB Larger Limit

Access
Permission

Only to user
All users in the

condominium

2.1.1 Kay's Processing Workflow

The processing workflow of Kay can be described in four

primary phases, and progressing through each of these is

essential to complete any task successfully. If any one of

these phases fail, the user will not get the desired output.

First, the user must submit their job via the SLURM

(Simple Linux Utility for Resource Management) script

file and the input data to the SLURM workload manager.

The SLURM workload manager is an open-source job

scheduler for supercomputers and is responsible for

managing the processing workflows in Kay. The

submitted job then passes to Kay's central processing unit,

also known as the compute nodes. Users don't have direct

access to this part. Once the job is completed, the output

files are sent to the workload manager where SLURM

sends the output files to the specific user. The cost of the

compute task is calculated and added to the user's account

appropriately. An overview of the processing workflow

is illustrated in Figure 3.

4 https://www.ichec.ie/eurocc-eurohpc-competence-centre-initiative
5 https://www.ichec.ie/academic/training-education

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 3 of 11

https://www.ichec.ie/academic/national-hpc
https://www.ichec.ie/academic/condominium-service
https://www.ichec.ie/academic/prace-access
https://www.ichec.ie/eurocc-eurohpc-competence-centre-initiative
https://www.ichec.ie/academic/training-education

Figure 3: Overview of Kay's processing workflow.

2.2 Mask R-CNN for Building Extraction

Mask R-CNN is a well-known Deep Learning technique

applied to instance segmentation problems (e.g. building

extraction) in the image processing domain (He et al.,

2017). Instance segmentation has also been extended to

various other applications such as object detection in

videos, reconstructing 3D buildings from aerial LiDAR,

and even directing surgery robots. Specific to our spatial

change detection problem (i.e. detecting changes in raster

images when compared to the current state of

OpenStreetMap vector data), it is feasible to use Mask R-

CNN instance segmentation results. Therefore, Mask R-

CNN models were trained to extract buildings from a

given satellite image, and the predictions were then

processed to identify any changes in the OSM maps.

Among the many implementations of Mask R-CNN, this

study is based on the Mask R-CNN tool implemented by

Matterport Inc. (Abdulla, 2017). In addition, Python3,

TensorFlow, and Keras APIs were used to integrate the

Mask R-CNN tool. The Mask R-CNN implementation is

built on the Feature Pyramid Network (FPN) (Lin et al.,

2017) and a ResNet1016 backbone. Three layers (i.e.

heads, 4+, and all) should be trained to obtain a complete

model. Training heads involves training a network head

layer, 4+ training denotes finetuning layers from ResNet

Stage 4 and above, and finally, training all layers indicates

finetuning all layers of the model with MS COCO datasets

(Lin et al., 2014).

2.3 Generative Adversarial Networks for Spatial

Change Detection (OSM-GAN)

Many different image processing techniques are used for

temporal change detection in images, such as Markov

random fields (Gong et al., 2013), principal component

analysis (Yousif and Ban, 2013), and CNN based

difference image approach (Jong et al., 2019). However,

Each of the techniques mentioned above have their own

limitations, for example, low performance, low

segmentation accuracy, higher time complexity, etc. With

6https://www.tensorflow.org/api_docs/python/tf/keras/applications/resn

et/ResNet101

relevant to Generative Adversarial Networks, previous

studies applied various image processing techniques for

seasonal change detection (Lebedev et al., 2018), heat-

map generation (Albrecht et al., 2020), and image

classification (de Jong et al., 2019). Inspired by this work,

our OSM-GAN approach applies a spatial change

detection methodology that uses spatial imagery (satellite

images) and OSM vector data (Niroshan and Carswell,

2022a) to train its models. It uses a Generative

Adversarial Network (GAN) (Isola et al., 2017) to

generate binary feature-maps (i.e. a black&white image

that represents particular map features (e.g. buildings) as

white blobs) for a given satellite image. Then the

prediction is post-processed to extract any changes (new

or modified buildings). Results show that OSM-GAN

deep learning models can perform a satellite image to

feature-map translation with a high confidence level

(Niroshan and Carswell, 2022a).

3 Machine Learning with Kay

Researchers need a user account on the ICHEC system

before submitting a job to Kay. Once the account is

approved, users then join an existing project, apply for

their own National Service project, or request access

through an institution Condominium (HPC, 2020). All the

use-cases in this paper were tested using the TU Dublin

condominium access to Kay. Figure 4 illustrates the next

steps to follow after successfully logging into the Kay

Supercomputer, and the steps are further described using

a real-world image processing case study.

Figure 4: The main steps to submitting a successful batch job

after logging into Kay. The dotted line path indicates optional

steps.

3.1 Log in

Users must configure an SSH security key on the local

device to remotely access Kay. First, the SSH keys

(private and public) need to be generated on the computer

used to connect to Kay. Second, the public key needs to

be sent to support@ichec.ie from the registered email, and

the ICHEC team will copy it to a suitable place; most

importantly, the private key should not be sent or shared.

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 4 of 11

https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet101
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet/ResNet101
mailto:support@ichec.ie

Once users set up the SSH key, users can log into Kay

using an SSH7 remote connection. The SSH key, ICHEC

username and password are then used to initiate an SSH

session into Kay's login node. Users can use any preferred

command-line interface (CLI) to execute commands (e.g.

windows PowerShell, command prompt, Linux Bash). A

screenshot after successful login is illustrated in Figure 5.

ssh <username>@kay.ichec.ie -i <path for the

private key>

Figure 5: The terminal view of Kay's login node.

3.2 Upload Required Data and Codes

The SCP8 CLI application was used to upload source code

and other relevant data in our experiments; however, Kay

supports both SCP and SFTP file transfer applications.

The required files were compressed before uploading to

Kay using the following command. This compression

step helps to avoid missing any files, especially when

uploading source code. The following commands were

used for compression and uploading operations.

• Compression of the source code directory

zip -q -r <filename>.zip <directory name>

• Upload the compressed file

scp -i <private_key> <local file path>

<username>@kay.ichec.ie:<remote file path>

3.3 Modules

Modules provide extra functionality and services to assist

users to build flexible applications. They allow access to

specific software, compilers, and libraries used for

scientific experiments. Kay consists of different versions

of modules, which allows users to prevent dependency

errors. For example, different versions of the Anaconda

package manager are available to use with different

versions of Python programs. Modules should be loaded

within the SLURM script, which will appear in the

compute nodes. The most useful commands related to

modules are listed in Table 4.

7 https://linux.die.net/man/1/ssh

Table 4: List of commands to manage modules in Kay

Command Description Example

module av
shows modules

available in the system.

module load

<name>

loads specified

modules

module load

conda

module unload

<name>

unloads specified

modules

module

unload conda

module list
lists all modules

currently loaded

module purge unload all modules

3.4 The Submission Script/SLURM script

A submission script is a shell script that includes all the

configurations (SLURM directives) and steps of the job.

Since Kay manages compute-intensive workloads using

the SLURM workload manager, users must submit batch

jobs through submission scripts. The SLURM workload

manager optimally allocates "compute nodes" for a user's

jobs. Therefore, submission scripts for our experiments

were prepared using the following steps. A sample

screenshot of the submission script is shown in Figure 6.

• Create a submission script.
touch <job_name>.sh

• Edit the submission script to add instructions of

the job.
nano <job_name>.sh

or

vim <job_name>.sh

Figure 6: A sample of the submission script. The script accepts

Linux commands and SLURM directives. SLURM directives

must be prefixed by #SBATCH. This script requires 2 hours of

processing time on two compute nodes in the GPU queue. Also,

it asks to send an email at the beginning and end of the job.

Although the submission script accepts Linux commands,

the SLURM directives must be included to define the

essential parameters and configurations. A list of

important SLURM directives is listed in Table 5.

8 https://www.unix.com/man-page/linux/1/scp/

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 5 of 11

https://linux.die.net/man/1/ssh
https://www.unix.com/man-page/linux/1/scp/

Table 5: List of SLURM directives used in submission scripts.

Purpose
#SBATCH

option
Example

Specify queue

to run the job
-p queuename #SBATCH -p GpuQ

Specify account

of the user

-A

accountname

#SBATCH -A

sample_user

Define number

of nodes to

allocate for job

-N number or -

-

nodes=number

#SBATCH --nodes=2

Indicate email

address

--mail-

user=email

address

#SBATCH --mail-

user=user@email.ie

Send email

when job starts

--mail-

type=BEGIN

#SBATCH --mail-

type=BEGIN

Send email

when job ends

--mail-

type=END

#SBATCH --mail-

type=END

Specify job

name

--job-

name=jobname

#SBATCH --job-

name=experiment_oo1

3.5 Job Submission

We used separate submission scripts for each experiment

as an error reduction technique. Once the submission

script is completed, it is submitted to the workload

manager using the "sbatch" command. This command

accepts a single command-line argument - the submission

script path. The shell command can be presented as

follow.

sbatch <submission_script_name>.sh

This command queues the submitted job into the job

queue, and the workload scheduler assigns the requested

resources for the task. The SLURM workload manager

consists of a useful set of commands that supports

additional controls and for obtaining more information

about the submitted jobs (Table 6). A complete set of

commands are listed on the ICHEC website9.

Table 6: Commonly used SLURM commands in the

experiments.

Command Description Example

sinfo
list details about queues and

partitions
sinfo

squeue

return a list of queued jobs. squeue

show information of user's

jobs

squeue -u

$USER

mybalance
show summary of core hour

balance of the account
mybalance

4 Geospatial Use Cases

This section describes how to use the Kay supercomputer

to train DL models for spatial image change detection

applications. First, a Mask R-CNN based building

extraction model, implemented using TensorFlow, was

9 https://www.ichec.ie/academic/national-hpc/documentation/slurm-
commands

trained. Second, a PyTorch based GAN model (i.e. OSM-

GAN) was trained to detect any spatial changes. These

scenarios included a number of experiments to build

several models using different datasets.

4.1 Training Mask R-CNN models on Kay

A north inner-city area around TU Dublin was selected to

make training data for the Mask R-CNN experiments.

Google Earth satellite images and corresponding

OpenStreetMap (OSM) building footprint data in this area

were mined using customised data crawlers to create the

datasets required for DL model training. Since OSM

vector data is in GeoJSON format (a standard format for

encoding map features), the data was converted into

binary .png image format to distinguish the building edges

easily. A training dataset directory consists of a satellite

image (.jpg format) and all affiliated building footprints

in individually separated binary images.

Several datasets (based on varying resolution/zoom

levels) were composed using the previously mentioned

crawlers. The images (satellite images, associated

building footprints) were 768x768 pixels in size. Each

dataset is split into two parts: 75% for training and 25%

for validation. Table 7 summarises the statistics of each

dataset, and Figure 7 illustrates an instance of a dataset.

Two pyramid-based training approaches (low-to-high

resolution and high-to-low resolution) were evaluated to

find the best strategy for identifying buildings in satellite

images. Transfer learning is the core idea behind this

training approach – this means several datasets and

training sessions were used to build a single model and

the final model comprises the knowledge of all

intermediate models.

Table 7: Datasets used in Mask R-CNN Kay experiments.

Dataset

1 2 3 4 5

Raster

Resource Google Earth

Vector

Resource OSM

Resolution 2m 1m 50cm 30cm 15cm

Zoom Level 16 17 18 19 20

Number of

satellite

images

234 315 1080 4416 17178

Average of

building

footprints

546 324 93 21 9

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 6 of 11

https://www.ichec.ie/academic/national-hpc/documentation/slurm-commands
https://www.ichec.ie/academic/national-hpc/documentation/slurm-commands

Figure 7: A data sample used in Mask R-CNN experiments.

Each separated feature image (left) and the satellite image (right)

are 256x256 pixels in size. All images are stored separately.

Both models were trained using five datasets. On a typical

"gamer spec" GPU-enabled laptop (NVIDIA® GeForce

RTX™ 2060), a total training time of 2084 minutes

(approximately 35 hours) was needed to train a Mask R-

CNN model with 3389 data samples. The total training

time can be split up into 266 minutes, 595 minutes, and

1223 minutes for heads, 4+, and all layers training times

respectively.

A Low-to-High pyramid model implies training a model

starting from a dataset with the lowest resolution, and step

by step, increments the training dataset with subsequent

higher resolution images. For instance, Dataset 1 (2m

resolution) was used to train the first model; then, this

model was used as the source model for the next training

stage with Dataset 2. Similarly, subsequent datasets were

used to train the other intermediate models. Finally, the

final model was obtained after training the 4th

intermediate model using a dataset having the highest

resolution (Dataset 5). A High-to-Low pyramid model

follows the reverse training sequence of the Low-to-High

pyramid model (i.e. the training process starts with a

dataset having the highest resolution).

Each dataset and source code were compressed and

uploaded to Kay using zip and scp commands.

• Compression command
zip -r dataset_16.zip data_16

• Uploading command
scp -i ~/id_ed25519 ./dataset_16.zip

abc@kay.ichec.ie:/ichec/work/xyz/abc/data

Where: abc=username and xyz=condominium name

The following submission script was used to submit a

batch job to Kay after uploading the datasets and the

source code.

1:

2:

3:

4:

5:

6:

7:

8:

9:

#!/bin/sh

#SBATCH --time=05:00:00

#SBATCH --nodes=2

#SBATCH -A abcd

#SBATCH -p GpuQ

#SBATCH --mail-user= user@email.ie

#SBATCH --mail-type=BEGIN,END

#SBATCH --job-name=H2L_16

module load cuda/10.1.243 gcc conda

intel/2019u5

10:

11:

12:

13:

14:

 15:

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ichec/packag

es/conda/2/pkgs/cudnn-7.6.0-cuda10.1_0/lib

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ichec/packag

es/conda/2/envs/cpu_tf1.14_torch1.1_hvd0.16/li

b/

conda activate mrcnn_tf2

WORKING_DIR=/ichec/home/users/user_name/DeepMa

pper/DNN

cd $WORKING_DIR

python -u train.py -d ./data/16

The following section describes the functionality of each

statement above:

Line 1. When a script starts with a hashbang (#!), the

program loader parses the rest of the program/script

to a specified program in Unix-like Operating

Systems. For instance, in this submission script, the

program loader is instructed to use the /bin/sh

program instead of any other.

Line 2. SLURM directive '#SBATCH --time' indicates

the time required for the job. This configuration will

stop the task once the time is up, even though the task

is not completed.

Line 3. This SLURM directive is used to request the

number of compute nodes.

Line 4. '#SBATCH -A' indicates the account name that

needs to be charged for the task.

Line 5. This statement indicates the job queue required

to execute the task. For instance, GpuQ was applied

since we chose the GPU queue to run the training

process.

Line 6. '--mail-user' SLURM directive defines the email

address where task updates should be sent. Note that,

after '=' sign, users have to insert their preferred email

address.

Line 7. We used both email options to get notification

emails when the task starts and ends.

Line 8. This assigns a name for the job, which can be

used to search for job details later on. For example,

the 'sinfo -j H2L_16' command is used to extract

information about the above task.

Line 9. This statement is used to load modules required

for the task, such as,

• cuda/10.1.243

• gcc

• conda and

• intel/2019u5

Line 10. This statement links compatible cuDNN and

CUDA libraries with the task.

Line 11. Appropriate TensorFlow libraries were linked

using this bash statement.

Line 12. 'conda activate mrcnn-tf2' command activates

the suitable Python environment for the task. For

example, mrcnn-tf2 is the suitable environment for

the code.

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 7 of 11

Line 13. This command initiates an environment variable

for the working directory containing the source code

of the task.

Line 14. 'cd' command is used to change the current

working directory in Unix-like Operating Systems.

Line 15. This command executes the training process

stored in train.py.

The submission script to the SLURM workload manager

using the sbatch command is shown below.
sbatch train_H2L_16.sh

An email was received when the task was started, then the

sinfo and squeue commands were used to monitor the job.

Also, a notification was received when the training

process was completed. Even when a job fails, errors are

notified by email and the job's standard output (stdout) is

stored in the home directory to resolve any issues. Linux

commands "cat" and "tail" can be used for this purpose.
cat ~/slurm-823528.out

tail -n 10 ~/ slurm-823528.out

Finally, the SCP command is used to download the trained

models and other files (e.g., log files, temporary models,

and testing outputs).
scp -i ~\id_ed25519

abc@kay.ichec.ie:/ichec/work/xyz/abc/mod

els/H2L_16.zip ~\Desktop\

The steps mentioned above are repeated until both

pyramid models are trained using all five datasets to

obtain the final models. The time taken for each training

stage of each dataset is listed below (Table 8). The third

intermediate model from the High-to-Low feature

pyramid approach with 30cm/pixel images achieved the

best qualitative prediction results. However, since Mask

R-CNN modelling was not deemed accurate enough for

predicting spatial changes, an improved method of object

detection and segmentation based on Generative

Adversarial Networks (OSM-GAN) was proposed next.

Table 8: Comparison of training times for Low-to-High Mask

R-CNN model.

Dataset Resolution
Training

Times (h:m:s)

Time Quota for layers

(seconds)

heads 4+ all

1 2 m 05:00:19 3314.90 6138.98 8565.12

2 1 m 04:16:07 2328.43 4725.16 8313.41

3 50 cm 03:01:03 1249.74 2968.89 6644.37

4 30 cm 01:47:18 866.89 1928.70 3642.40

5 15 cm 01:27:12 599.41 1690.27 2942.33

4.2 Training OSM-GAN models using Kay

A vector data crawler is first used to mine for applicable

OSM vectors (saved in GeoJSON format). Additionally,

OSi building footprint vectors are also processed and

segmented into GeoJSON files. These two vector data

sources are used for OSM-GAN model training and

change detection processes. The separated GeoJSON

objects are then translated to binary images (white pixels

represent buildings, black pixels represent the

background) and stored in separate directories based on

their ground coordinates. The binary images are merged

into a single 256x256 pixel-sized image using a merging

process. Two different bit depths (24-bit colour and 8-bit

greyscale) and various pixel resolutions were used to train

the models. As a result, the following experiments

evaluated sixteen OSM-GAN models in total. Figure 8

presents a single training sample of the OSM-GAN

dataset created using a Google Earth satellite image and

OSM building footprints.

Figure 8: A data sample from the OSM-GAN training dataset.

The left side is the input Google satellite image – the right side

is a binary image of the current OSM building footprint (feature-

map) of the area.

As in the previous experiments, datasets were produced

on a laptop and then compressed and uploaded to Kay

using the following commands.
zip -r ./dataset_1.zip ./google_osm_data

scp -i ~/id_ed25519 ./dataset_1.zip

abc@kay.ichec.ie:/ichec/work/xyz/abc/osm

_gan/data

Next, a submission script for the training task is created

and submitted to the SLURM workload manager. Below

is the submission script used in this experiment.
1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

12:

#!/bin/sh

#SBATCH --time=02:00:00

#SBATCH --nodes=2

#SBATCH -A condominium_name

#SBATCH -p GpuQ

#SBATCH --mail-user=xxxxx@yyyy.ie

#SBATCH --mail-type=BEGIN,END

#SBATCH --job-name=OSM_GAN_T1

module load cuda/10.1.243 gcc conda

intel/2019u5

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ichec/packag

es/conda/2/pkgs/cudnn-7.6.0-cuda10.1_0/lib

conda activate torch

WORKING_DIR==/ichec/work/condominium_name/user

name/osm-gan

cd $WORKING_DIR

python -u train.py --dataroot

../data/Google_OSi_24bit_z19/ --name

Google_OSi_24bit_z19 --model pix2pix --

direction AtoB --save_epoch_freq 50

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 8 of 11

mailto:abc@kay.ichec.ie:/ichec/work/xyz/abc/osm_gan/data
mailto:abc@kay.ichec.ie:/ichec/work/xyz/abc/osm_gan/data

The script is then submitted to SLURM Workload

Manager to begin the DL model training process. Once

processing is complete, the final outputs are downloaded

to the local computer for prediction purposes.

Notably, the OSM-GAN model trained with 24-bit, 30cm

Google Earth imagery and OSM building footprints

scored the highest accuracy (88.4%). A post-analysis of

all OSM-GAN model prediction results can be found in

(Niroshan and Carswell, 2022b).

5 Common Problems and Solutions

This section presents some issues encountered during Kay

experiments and how ICHEC advised to resolve these

issues.

P1. Home storage was exceeded during DL experiments.

Temporary files created during experiments can

exceed the default storage size of 25GB. Especially

when Anaconda10 is used to manage packages for the

Python-based code, the conda11 environment creates

large files in the home storage.

S1. Removing unnecessary conda environments. The

"du -sh ~/.conda/envs" command provides a

breakdown of the storage cost for each conda

environment. Then it is straightforward to determine

which environment/packages need to be removed.

The following commands can be used to manage

conda environments.

• Remove a conda environment
conda remove --name <env name> –all

• Viewing a list of installed packages
conda list -n <env name>

• Remove a package from a conda environment
conda remove -n <env name> <package name>

P2. LD_LIBRARY_PATH is the predefined environment

variable in Linux/Unix which sets the path for the

linker when linking dynamic libraries or shared

libraries. If LD_LIBRARY_PATH is not defined,

the program will not execute successfully.

S2. Add LD_LIBRARY_PATH environment variable to

the submission script. The best way to use

LD_LIBRARY_PATH is to export the path after

modules are loaded. The following statement can be

used to set paths for cuDNN and CUDA:
Export

LD_LIBRARY_PATH=$LD_LBRARY_PATH:/ichec/p

ackages/conda/2/pkgs/cudnn-7.6.0-

cuda10.1_0/lib

P3. Conflicts between CUDA and cuDNN versions.

10 https://www.anaconda.com/open-source
11 https://docs.conda.io/projects/conda/en/latest/user-

guide/tasks/manage-environments.html

The CUDA Deep Neural Network (cuDNN) library

is a GPU-accelerated library of primitives for deep

neural networks (DNN). It provides implementations

for standard DL functions such as forward and

backward convolution, pooling, normalisation, and

activation layers. CUDA is a parallel computing

platform that uses the GPU for general-purpose

computing tasks. When a mismatched CUDA and

cuDNN are imported, the program will not execute

correctly. For example, cuDNN v7.6.0 cannot be

used with CUDA 11.2, but it can be used with CUDA

10.1.

S3. Managing CUDA and cuDNN versions carefully.

cuDNN support matrix 12 and cuDNN archive 13

provide comprehensive details on reducing CUDA

and cuDNN conflicts. Download setup files into the

local computer after choosing the suitable CUDA and

cuDNN versions (downloading process requires

NVIDIA membership). Then use SCP command to

upload the setup file into Kay.

P4. Create a conda environment on Kay.

S4. Follow the steps below to create a conda

environment.
module load conda

conda create -n envAI python=3.7

conda info --envs

source activate envAI

conda install tensorflow-gpu

P5. The working storage was overloaded during the

training process. The intermediate outcomes of the

Deep Learning process exceeded the memory limit,

and the process stopped. These files cannot be

deleted manually as they are created in a short period

of time.

S5. A directory watching program was developed and

executed in the login node to remove intermediate

output files if necessary. After submitting the job to

the SLURM workload manager, this program was

executed on the login node.

6 Conclusions

Supercomputers offer a powerful computing platform for

scientific discovery in many fields. The advances in AI

and DL algorithms in particular remind us that the use of

common desktop/laptop research computers is no longer

enough to accomplish (efficiently) many modern

compute-intensive problems.

This paper presented a practical use of the Kay

supercomputer in GIScience research. The demonstrated

12 https://docs.nvidia.com/deeplearning/cudnn/support-
matrix/index.html
13 https://developer.nvidia.com/rdp/cudnn-archive

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 9 of 11

https://www.anaconda.com/open-source
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
https://developer.nvidia.com/rdp/cudnn-archive

image processing use-cases required CUDA support to

train its models – a process that took days to complete on

a traditional laptop with a single GPU. The use of Kay

significantly reduced training times from days to hours

(Table 8). In comparison, training a Mask R-CNN model

on a single NVIDIA Ge-Force RTX 2060 GPU (typical

"gamer spec" laptop) took 35.5 hours (~1.5 days). As

such, Kay helped enormously when conducting multiple

experiments using different image datasets/resolutions

and DL model parameter variations.

Also discussed were some practical run-time issues that

could arise when running jobs on Kay. The ICHEC

provides an excellent user support mechanism, well-

documented user guides and tutorials, and additional

online events for further consultations with users.

Data and Software

Google Earth satellite images and OSi orthophotos were

used with OSM vector data to train and validate Deep

Learning models in these experiments. Sections 4.1 and

4.2 explicitly describe the relevant data resources and how

they were prepared. Google (raster images) and OSM

(vector footprints) data crawlers can be accessed in the

GitHub repository:

https://github.com/Lasith-Niro/DeepMapper-Backend.

From a software perspective, Python-based Mask-RCNN

and Generative Adversarial Network implementations

were used in the experiments. SLURM scripts used by

Kay are published in the following GitHub repository:

https://github.com/Lasith-Niro/kay_scripts

ACKNOWLEDGMENTS

The authors wish to thank all contributors to the

OpenStreetMap project and gratefully acknowledge

Ordnance Survey Ireland for providing both raster and

vector data for the experiments. This research is funded

by Technological University Dublin College of Arts and

Tourism, SEED FUNDING INITIATIVE 2019-2020.

The authors also wish to acknowledge the Irish Centre for

High-End Computing (ICHEC) for their provision of

computational facilities and support.

References

Abdulla W., Mask R-CNN for object detection and

instance segmentation on Keras and TensorFlow,

Github, 2017.

Albrecht C. M., R. Zhang, X. Cui, M. Freitag, H. F.

Hamann, L. J. Klein, U. Finkler, F. Marianno, J.

Schmude, N. Bobroff and others, “Change detection

from remote sensing to guide openstreetmap labeling,”

ISPRS International Journal of Geo-Information, vol.

9, p. 427, 2020.

Bishop CM. Pattern recognition. Machine Learning.

2006 Feb;128(9).

Chaturvedi S, Mishra V, Mishra N. Sentiment analysis

using machine learning for business intelligence.

In2017 IEEE International Conference on Power,

Control, Signals and Instrumentation Engineering

(ICPCSI) 2017 Sep 21 (pp. 2162-2166). IEEE.

De Jong K. L. and Bosman A. S., "Unsupervised change

detection in satellite images using convolutional neural

networks," in 2019 International Joint Conference on

Neural Networks (IJCNN), 2019.

de Jong KL, Bosman AS. Unsupervised change detection

in satellite images using convolutional neural networks.

In2019 International Joint Conference on Neural

Networks (IJCNN) 2019 Jul 14 (pp. 1-8). IEEE.

Dennis J.B. Data flow supercomputers. Computer. 1980

Nov 11;13(11):48-56.

Gong M, Su L, Jia M, Chen W. Fuzzy clustering with a

modified MRF energy function for change detection in

synthetic aperture radar images. IEEE Transactions on

Fuzzy Systems. 2013 Feb 26;22(1):98-109.

He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn.

InProceedings of the IEEE International Conference on

Computer Vision 2017 (pp. 2961-2969).

Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image

Translation with Conditional Adversarial Networks. In

Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.

Lebedev M. A., Y. V. Vizilter, O. V. Vygolov, V. A.

Knyaz and A. Y. Rubis, "Change Detection in Remote

Sensing Images Using Conditional Adversarial

Networks", International Archives of Photogrammetry,

Remote Sensing & Spatial Information Sciences, vol.

42, 2018.

Lin T. Y., M. Maire, S. Belongie, J. Hays, P. Perona, D.

Ramanan, P. Dollár and C. L. Zitnick, Microsoft coco:

Common objects in context. In European Conference

on Computer Vision 2014 Sep 6 (pp. 740-755),

Springer, Cham.

Lin T.Y., Dollár P, Girshick R, He K, Hariharan B,

Belongie S. Feature pyramid networks for object

detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition 2017 (pp.

2117-2125).

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 10 of 11

https://github.com/Lasith-Niro/DeepMapper-Backend
https://github.com/Lasith-Niro/kay_scripts

Murray C.J. The supermen: The story of Seymour Cray

and the technical wizards behind the supercomputer.

John Wiley & Sons, Inc.; 1997 Jan 1.

Niroshan L. and Carswell J.D. OSM-GAN: Using

Generative Adversarial Net-works for Detecting

Change in High-Resolution Spatial Images. 5th

International Conference on Geoinformatics and Data

Analysis (ICGDA 2022), Paris, France, January 2022,

Springer Lecture Notes on Data Engineering and

Communications Technologies.

Niroshan L. and Carswell J.D. Post-Analysis of OSM-

GAN Spatial Change Detection. 19th International

Symposium on Web and Wireless Geographical

Information Systems (W2GIS 2022), Konstanz,

Germany, April 2022, Springer Lecture Notes in

Computer Science.

Siau K, Wang W. Building trust in artificial intelligence,

machine learning, and robotics. Cutter Business

Technology Journal. 2018 Mar 26;31(2):47-53.

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran

E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao

S. Applications of machine learning in drug discovery

and development. Nature Reviews Drug Discovery.

2019 Jun;18(6):463-77.

Vedovello C. Firms' R&D activity and intensity and the

university–enterprise partnerships. Technological

Forecasting and Social Change. 1998 Jul 1;58(3):215-

26.

Wang B, Lu J, Yan Z, Luo H, Li T, Zheng Y, Zhang G.

Deep uncertainty quantification: A machine learning

approach for weather forecasting. In Proceedings of the

25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining 2019 Jul 25 (pp.

2087-2095).

Wooldridge, Michael. "A brief history of artificial

intelligence; what is it, where we are and where we are

going." (2021): 272. Flatiron Books.

Yousif O, Ban Y. Improving urban change detection from

multitemporal SAR images using PCA-NLM. IEEE

Transactions on Geoscience and Remote Sensing.

2013 Mar 14;51(4):2032-41.

AGILE: GIScience Series, 3, 11, 2022 | https://doi.org/10.5194/agile-giss-3-11-2022 11 of 11

