Journal cover Journal topic
AGILE: GIScience Series Open-access proceedings of the Association of Geographic Information Laboratories in Europe
Journal topic
Articles | Volume 2
AGILE GIScience Ser., 2, 9, 2021
AGILE GIScience Ser., 2, 9, 2021

  04 Jun 2021

04 Jun 2021

Prophet model for forecasting occupancy presence in indoor spaces using non-intrusive sensors

Alec Parise1, Miguel A. Manso-Callejo2, Hung Cao1, and Monica Wachowicz1,3 Alec Parise et al.
  • 1People in Motion Lab, University of New Brunswick, Canada
  • 2Universidad Politécnica de Madrid, Spain
  • 3RMIT, Australia

Keywords: Internet of Things, occupant behavior, non-intrusive sensing, Prophet forecasting model

Abstract. The Internet of Things is a multi-sensor technology with the unique advantage of supporting non-intrusive and non-device occupancy detection, while also allowing us to explore new forecasting occupancy models. However, forecasting occupancy presence is not a trivial task, since it is still unknown the main criteria in selecting a forecasting modelling approach according to a non-intrusive sensing strategy. Towards this challenge, this paper proposes an analytical workflow developed to support the Prophet model for forecasting occupancy presence in indoor spaces throughout the tasks of sensing, processing, and analysing event triggered data generated from ten non-intrusive sensors, including motion, temperature, luminosity, CO2, TVOC, sound, pressure, accelerometer, gyroscope, and humidity sensors. The usefulness of this analytical workflow is demonstrated with the implementation of an IoT platform for an experiment operating non-intrusive sensing in a classroom. The assessment is made at different time intervals and the results confirm that there is a relationship between the event-count and occupancy presence in such a way that the larger the number of events triggered in an indoor space, the higher the probability of an indoor space being occupied.

Publications Copernicus