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Abstract. Geography has long sought to explain spatial 
relationships between social and physical processes, 
including the spread of infectious diseases, within the 
context of modelling human-environment interactions. 
The spread of the recent COVID-19 pandemic, and its 
devastating effects on human activity and welfare, 
represent but examples of such complex human-
environment interactions. In this paper, we discuss the 
value of agent-based models for simulating the spread 
of the COVID-19 virus to support decision-making with 
regards to non-pharmaceutical interventions, e.g., lock-
down. We also develop a prototype agent-based model 
using a minimal set of rules regarding patterns of human 
mobility within a hypothetical town, and couple that 
with an epidemiological model of infectious disease 
spread. The coupled model is used to: (a) create 
synthetic trajectories corresponding to daily and weekly 
activities postulated between a set of predefined points 
of interest (e.g., home, work), and (b) simulate new 
infections at contact points and their subsequent effects 
on the spread of the disease. We finally use the model 
simulations as a means of evaluating decisions regarding 
the number and type of activities to be limited during a 
planned lockdown in a COVID-19 pandemic context. 
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1 Introduction 

The extent and intensity of the recent COVID-19 
pandemic, enhanced by the interconnectedness of the 
population due to urbanization and globalization, 
demonstrated the complexity of the effects of a 
pandemic in all areas of human life and activities. As 
both the spread and consequences of COVID-19 are 

spatially indexed and dynamic in nature, relevant 
application areas of GIScience concepts and methods 
include the visualization and analysis of the 
spatiotemporal distribution of infected cases, the 
spatiotemporal activities of individuals, mobility 
patterns and transportation networks, the spatial 
dimension of environmental conditions that enhance the 
spread of diseases, and the access to health care facilities 
(Franch-Pardo et al., 2020; Kamel Boulos and Geraghty, 
2020; Zhou et al., 2020). Moreover, the recent COVID-
19 pandemic has highlighted important scientific 
opportunities and synergies between spatial analysis, 
modelling and simulation with key allied scientific 
fields, such as epidemiology, data science, 
transportation, spatial planning and economics (Hsiang 
et al., 2020; Latif et al., 2020; Wulkow et al., 2021).  

In this work, we advocate the use of simulation 
experiments within an interdisciplinary agent-based 
modelling framework, and the evaluation of scenarios 
related to the spread of the COVID-19 pandemic for 
guiding non-pharmaceutical interventions that can be 
spatially and temporally focused. Such decisions may 
include when a lockdown should be imposed or lifted, 
what elements of social / economic life and related 
activities should be restricted or enhanced, in what 
chronological order, and where geographically, all with 
a view to their potential impact on public health and the 
economy. We also develop a prototype agent-based 
model using a minimal set of rules regarding patterns of 
human mobility within a synthetically sketched town, 
and couple that model with an epidemiological model of 
infectious disease spread. We use model simulations to 
illustrate the evaluation of alternative decisions about 
the number and type of activities to be limited during a 
planned lockdown in the COVID-19 pandemic context. 
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2 ABMs in epidemiology  

Agent-based models (ABMs) are generally defined as a 
computational framework consisting of autonomous 
agents for simulating dynamic processes (Bonabeau, 
2002), commonly used to model individual decision-
making and social and organizational behaviour. Agents 
most often represent people or groups in a community, 
endowed with a set of behavioural rules encapsulating 
their daily activities, social behaviour, and interactions 
with the environment and among each other.  

As diseases such as MERS, H1N1 and H5N1 flues, but 
also the recent coronavirus (SARS-CoV-2), are 
transmitted from individual to individual via their 
contact networks in geographical space, understanding 
infectious disease dynamics calls for spatially explicit 
process models. The dynamic nature of interactions also 
increases the complexity of the transmission 
mechanisms, and consequently renders pandemic risk 
assessment more difficult. The process of modelling and 
simulating infectious disease spread in light of relevant 
contacts can lead to a better understanding of 
transmission mechanisms, while being practically useful 
towards the development of theories, planning of 
epidemiological surveys, as well as the prediction of 
trends, all of which could eventually prevent hasty 
decisions when it comes to interventions (Yang et. al., 
2008; Perez and Dragicevic, 2009; Khalil et al., 2012). 

Spatial ΑΒΜs are ideal for simulating the evolution of a 
disease within an epidemic or pandemic context (Tracy 
et al., 2018). Such simulations can broaden 
understanding regarding infectious disease transmission 
by highlighting patterns of interactions with other agents 
(Frerichs et al., 2019). In addition, ABMs are valuable 
tools for policy shaping and planning interventions for 
the benefit of public health and the economy. The more 
realistically a model recreates social interactions the 
more practical its application to real-world scenarios and 
the prediction of potential impacts on control measures 
against an upcoming pandemic will be (Wang, 2020).  

The transmission levels, the incubation period, as well 
as the uncertainty associated with the virus detection, in 
combination with the increased human mobility within 
and between urban areas, has led to the need of scientific 
and technological support for the mitigation and control 
of its further spread (Zhou et al., 2020). Given the 
bottom-up nature of ABMs, their use for modelling a 
pandemic has recently expanded, providing further 
insights on mechanisms that produce spatiotemporal 

patterns of disease cases while taking into consideration 
the heterogeneous behaviour of individuals and related 
social networks (Hunter et al., 2018). 

Despite their advantages, ABMs suffer from several 
drawbacks. In particular, data on population activities 
and on the stochastic nature of infectious disease spread 
are often sparse or unavailable (Yang et al., 2008). The 
use of big data, e.g., telecommunication and social 
network data, for tracing of human mobility is gradually 
helping to overcome related issues, although their 
reliability is often questioned (Venkatramanan et al., 
2018). Moreover, lifting the restrictions of personal data 
protection is not always feasible. The behaviour of 
individuals in space and the tracking of their movement 
often presents various degrees of deviation from area to 
area due to variations of demographic and 
socioeconomic characteristics. Developing ABMs that 
encapsulate realistic individual behaviour taking into 
account social background and adaptation to pandemic 
conditions is therefore challenging. 

3  Coupling ABMs with epidemiological 
models 

The temporal evolution of the spread of a disease over a 
population is widely modelled via the Susceptible, 
Infected, Removed or recovered (SIR) epidemiological 
model and/or its various extensions (Hethcote, 2000). 
The basic version of the SIR model includes three health 
states which group individuals in three population 
compartments (see Figure 1): 

● Healthy but vulnerable to disease; susceptible (S)
● Infected (I)
● Removed or recovered (R )

Figure 1. The three epidemiological states of a SIR model. 

Term β (beta) controls the transition between stages S 
and I while term γ (gamma) affects the transition 
between stages I and R.  

SIR models (and their extensions) typically treat each 
compartment of the population as a homogenous group 
of people that live and move in a homogeneous 
geographical area. Although efforts have been made to 
extend SIR models by incorporating additional 
functionality, such as age groups or other individual 
features, the integration of the spatial component, i.e., 
geographical variability, in such models is still under 
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development. Integrating spatial variability in SIR 
models can bring significant benefits in understanding 
the most important factors in the transmission of 
infectious diseases (O’ Sullivan et al., 2020). For 
example, the points of entertainment in a town could 
bring about a change in health status (S to I) to many 
individuals, as they attract agents closest to them and 
beyond. Evidently, the concepts of centrality, 
accessibility and distance play an increasingly important 
role in such a “spatial” SIR model. 

In this work, we use the SIR general epidemiological 
framework, yet we couple this with a spatial ABM of 
human mobility with a town. The elements of the SIR 
model are integrated in a spatial context, calculating 
transitions between the SIR states per person and not for 
the whole population. More specifically, for each 
individual agent, terms β and γ are computed depending 
on agent “coexistence” in the same space (school, home, 
entertainment, etc.). The particular mobility ABM of the 
coupled model represents an effort to circumvent the 
need for detailed individual data, and rather utilizes 
general knowledge on recurring patterns of 
mobility/activity within a week (home, work, shopping, 
etc.). Coupling the ABM with the SIR model allows the 
evaluation of alternative mobility restrictions in the 
context of the COVID-19 pandemic.  

4  Case study 

We used the coupled SIR/ABM to generate a set of 
simulations of individual trajectories and associated 
contacts and possible COVID-19 infections in a virtual 
town (see Figure 2) with a population of 4000 
individuals, a typical town size in Southern Europe. The 
time horizon of the simulation was 180 days; initially 
only 5 people were infected with the COVID19 virus. 
We also used a period of 4 to 7 days for disease 
incubation and R0=3 as an expected number of close 
contacts to be infected from an infected individual. 

Intervention scenarios 

We employed the coupled ABM to investigate the 
effects of different types of policy interventions, 
examining the effects they may have on the course of the 
spread of an infectious disease. The interventions we 
introduced in our ABM indirectly affect mainly the 
value β of the above SIR model by changing the rate at 
which people are infected.  

Figure 2. Synthetic town layout with points of interest, and 
example of simulated agent locations. 

More specifically, term β in our model is affected by: 
● How many contacts does each agent have per

day (Intervention 1)
● For each of its infected contacts, what is the

probability of being infected (Intervention 2)

Regarding term γ, we used a commonly accepted value 
which however has not yet been fully documented since 
the COVID-19 pandemic is still evolving. The value for 
term γ in our spatial model is γ = 5%, meaning that for 
each time step of the model 5% of the infected 
population is removed/recovered. At this stage, we do 
not include deaths or different age groups in the ABM 
for simplicity. 

The following interventions were implemented and the 
results were evaluated either individually or 
comparatively: 

Intervention 1: Different types of lockdown: 

1. no restrictions (20 daily contacts on average
per agent)

2. entertainment restriction: (10 daily contacts on
average per agent)

3. entertainment + school restrictions: (5 daily
contacts on average per agent)

4. entertainment restrictions + school + “stay
home” campaign: (2 daily contacts on average
per agent)

The picture can't be displayed.
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Intervention 2: Use of personal hygiene measures: 

1. no measures (5% chance of infection on each
contact on average)

2. antiseptic use (4% chance of infection on each
contact on average)

3. antiseptic use + mask (3% chance of infection
on each contact on average)

1000 simulations were performed for each of the 12 
combinations (3 * 4) of interventions and the average of 
each combination was computed. Figure 3 provides the 
results for each combination of measures in the virtual 
town. 

Figure 3. Results based on 1000 simulations. New daily 
incidents for the 12 combinations of interventions. 

As shown in Figure 3, during the first days, i.e., without 
lockdown restrictions and with entertainment 
restrictions, the daily new cases are as many as the 
individual contacts. The overall development of new 
cases is gradually decreasing as restrictive lockdown 
measures are applied (fun, school, “we stay home”). 
Also, the use of personal hygiene measures intensifies 
this reduction even more, to the point where in some 
cases only 2% of the population was infected after 10 
days. 

Figure 4. Total incidents for the 12 combinations of 
interventions. 

Figure 4 depicts the temporal distribution of total cases 
in this virtual town. This graph shows the overall health 
status of the town and reflects the extent of the disease 
spread to ABM model agents. It appears that during the 
first days, the number of total cases in the town 
increases. However, this increase is somewhat limited if 
restrictive lockdown measures are implemented to 
reduce the daily contacts of agents. The effect of 
lockdowns is very obvious even without any personal 
hygiene measures (first row of graphs). In this case, as 
long as lockdown restrictions (from left to right, in the 
first row) are applied, the total number of people 
affected by the COVID-19 is gradually reduced from 
100% down to 63%. 

Figure 5 shows a comparative superposition graph for 
the 12 scenarios. Here, the impact on the overall cases 
of the city by type of intervention is evident. The 
flattened shape of the curves is clear as lockdown 
measures and personal hygiene measures increase. 

Figure 5. Comparison of the 12 combinations of 
interventions in terms of total daily cases. 

5  Discussion 

The COVID-19 pandemic demonstrated that a well 
informed policy design is vital for formulating and 
implementing effective interventions to limit virus 
spread (Hsiang et al., 2020). In this context, ABMs are 
considered as an appropriate tool for modelling human 
activity (mobility and contacts) within a pandemic 
context, taking into account several parameters (virus 
transmission rate, city/community-level dispersion, 
population and its spatial distribution, etc.), on which 
policy-makers could rely to take effective measures 
against disease spread. 

ABMs can significantly reduce government response 
time for decision-making, as through the creation and 
evaluation of different modelling scenarios it can better 
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be determined whether restrictive measures , such as 
quarantine, mandatory use of masks and/or curfew, 
could act beneficially towards the alleviation of the 
epidemic load in a study area.  Furthermore, the gradual 
lifting of any imposed restrictive measures, along with a 
reassessment of the pandemic state, may also be 
evaluated through the use of ABMs. 

The ABM implemented in this work utilizes general 
knowledge on recurring patterns of human mobility 
within a week (going to home, work, shopping, etc.) to 
evaluate alternative mobility restrictions in the context 
of COVID-19 spread. A possible future extension could 
pertain to the introduction of different probabilities of 
infection per age group to reflect different health 
conditions among sectors of the population. The model 
could be also extended in the future by adding more 
complex types of measures and interventions, which 
could be analysed as “what-if” scenarios not only in 
terms of their implementation but also in the context of 
their removal or lifting. 
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