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Abstract.
Accurate and complete geographic data of human set-
tlements is crucial for effective emergency response,
humanitarian aid and sustainable development. Open-
StreetMap (OSM) can serve as a valuable source of
this data. As there are still many areas missing in
OSM, deep neural networks have been trained to de-
tect such areas from satellite imagery. However, in re-
gions where little or no training data is available, train-
ing networks is problematic. In this study, we pro-
posed a method of transferring a building detection
model, which was previously trained in an area well-
mapped in OSM, to remote data-scarce areas. The
transferring was achieved via fine-tuning the model
on limited training samples from the original training
area and the target area. We validated the method by
transferring deep neural networks trained in Tanzania
to a site in Cameroon with straight distance of over
2600 km, and tested multiple variants of the proposed
method. Finally, we applied the fine-tuned model to de-
tect 1192 buildings missing OSM in a selected area
in Cameroon. The results showed that the proposed
method led to a significant improvement in f1-score
with as little as 30 training examples from the target
area. This is a crucial quality of the proposed method
as it allows to fine-tune models to regions where OSM
data is scarce.

Keywords. OpenStreetMap, deep learning, building
detection, humanitarian mapping, DeepVGI

1 Introduction

Spatial data are fundamental for long-term planning
and sustainable development as well as immediate
emergency and disaster response. Information on the
spatial distribution of human settlements is of partic-
ular importance. "Disaster mapping" has been proven
as a powerful method to leverage the "ability of volun-
teers to assist in disaster response situations via map-
ping an other spatial analysis" (Albuquerque et al.,
2016; Herfort et al., 2021), especially in Sub-Saharan
Africa, a region struggling with extreme poverty and
other humanitarian issues. Still, the availability of
such data from local governmental sources remains
relatively poor (Humanitarian OpenStreetMap Team,
2019).

The crowdsourced mapping platform OpenStreetMap
(OSM) can be a valuable source of this data, especially
when data from other sources is not available. Since
many areas have still not been mapped sufficiently in
OSM, identifying these areas is an important and nec-
essary step towards better reliability of OSM and ef-
fective management of volunteer contributions.

Supervised or unsupervised machine learning ap-
proaches have been used in a few recent studies
for such machine-assisted mapping tasks (Chen and
Zipf, 2017). Herfort et al. (2019) proposed a method
of training deep neural networks to detect buildings
from satellite imagery and assist another crowdsourced
mapping platform, namely MapSwipe, to better and
faster identify human settlements which are missing in
OSM. Li et al. (2020) applied a clustering algorithm
of geotagged tweets to identify areas with high po-
tential of human activities. In a second step, a similar
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approach to (Li et al., 2019) was applied, using pre-
trained deep networks to classify image tiles with high
probability of OSM missing built-up areas. Both stud-
ies trained their networks in areas where OSM cover-
age of buildings was relatively high and applied their
networks in relative proximity to where the networks
were trained.

In this study, we focus on enabling deep neural net-
works to be adapted to remote geographic regions,
which aims to identify missing OSM buildings in re-
gions where there is little or no relevant data available
in OSM.

The hypothesis is that a trained neural network, namely
a model, can perform well in areas with similar appear-
ances to the training region. We used the geograph-
ical distance as a proxy for this similarity. It is then
assumed that the performance of the model decreases
significantly when applied in areas that differ from
the training regions. These differences include diverse
landscapes, sources of satellite imagery or appearances
of buildings.

2 Data and Methods

2.1 Data

Labels acquired from OSM were used to train the
model on building detection from Bing satellite im-
age tiles at zoom level of 18. The spatial resolution of
the imagery was approximately 0.6 meters. Each im-
age tile corresponded to one training examples and had
a size of 256×256 pixels.

Table 1. Overview of data sets.

Name Country Type Buildings

Igombe Tanzania Training 14781
Kalola Tanzania Validation 340

Bandjoun Cameroon Training 4091
Ndem Cameroon Validation 1100

Bamendjou Cameroon Test 286
Batcham Cameroon Test 370

Djeve Cameroon Test 359

A total of seven data sets were used. They are detailed
on Table 1 and visualized on Figures 1 and 2.

Traning data set Igombe was used to train the base
model. It was collected from an area near the city
Igombe, Tanzania. This location was selected as it of-
fers a relatively good quality of OSM data considering
the finished humanitarian mapping projects in the area.

Training area Bandjoun was used to sample additional
training examples to generate fine-tuning data sets. The
size of this data set was chosen to test how the base
model can be fine-tuned to a data-scarce region.

Validation sets Kalola and Ndem (one in close geo-
graphic proximity to each of the two training data sets)
were used to compare how different models perform.
Test sets Batcham, Djeve and Bamendjou were used
to assess the performance of a final selected model on
unseen data.

Figure 1. Overview of data sets in Tanzania.

Building geometries in all validation and test sets were
manually checked, corrected and completed. Since
OSM data is considered the ground truth, when com-
puting performance metric, this manual check ensured
accurate statistics regarding model performance will
be obtained.

Figure 2. Overview of data sets in Cameroon.

2.2 Methods

This study presents a novel method of adapting (fine-
tuning) a previously trained convolutional neural net-
work (the base model) to new locations. The base
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model was obtained by tuning an SSD Inception V2
network (Szegedy et al., 2016), pre-trained on Mi-
crosoft COCO data set (Lin et al., 2015), on a spatially
homogeneous data set Igombe, Tanzania. Our method
predicted bounding boxes of every individual detected
building and we can therefore provide fine-grained in-
formation on the volume of buildings present and miss-
ing in OSM.

SSD Inception V2 consists of three main parts. First,
the backbone network, Inception V2, is responsible
for extracting features from the raw input image. The
backbone network is truncated before classification
layers. Next, additional convolutional layers are added
that progressively decrease in size. Each of these lay-
ers produces feature predictions. Known as multi-scale
feature maps, they allow detection of features at differ-
ent scales. Finally, classification layers at the end are
used to classify predictions.

To calculate loss, the predicted bounding boxes are
classified as positive or negative. A prediction is classi-
fied as positive if the Intersection over Union (IoU) of
the ground truth box and the predicted bounding box
is equal or greater than a specified threshold. In this
study, an IoU threshold of 0.3 was used. Otherwise,
the prediction is classified as negative.

The loss function used for model training is computed
as a combination of localization and classification loss
(Liu et al., 2016):

L(x,c, l,g) =
1

N
(Lclass(x,c)+Lloc(x, l,g)) (1)

where N is the amount of matched default boxes,
xp
ij = 1,0 indicates if the i-th default box is a positive

match for the j-th ground truth bounding box of class
p, c is the correct class, g is the ground truth box and l is
the predicted box. Only positive predictions are consid-
ered in the localization loss. For details on how local-
ization and classification losses are computed, please
refer to Liu et al. (2016).

For training, the RMSprop (root mean squared propa-
gation) algorithm, based on gradient descent and pro-
posed by (Hinton, 2012), was used as an optimizer.
Batch size of 24 and an exponential decay learning rate
that decreases progressively during training were also
used.

The fine-tuning method was inspired by few shot learn-
ing, an emerging topic in machine learning character-
ized by a limited size of training data set. In particular,
our inspiration comes from the approach of Wang et al.
(2020) who used a two-stage approach: after training
the model on base classes Cb, feature extractor data
weights were fixed and only the classifier was fine-
tuned with an additional, fine-tuning data set. Wang
et al. (2020) generate the fine-tuning data set by com-
bining examples of Cb with examples of new-added

classes Cn, such that the data set contains an equal
number of examples per class.

In this study, the focus was on detecting only a single
class - buildings. Nevertheless, there are similarities
with the situation of few shot learning. The base model
was trained on satellite imagery labeled by OSM data
in an area near the city of Igombe, Tanzania (Figure 1),
where OSM data is abundant. As per our hypothesis,
this model’s performance would decrease when used
in regions with different appearance from the training
data. Because OSM data is scarce in many regions of
Sub-Saharan Africa, it is not possible to train a new
model for each area in which we want to detect build-
ings. Therefore, the situation resembles the settings
presented in Wang et al. (2020), only instead of a lim-
ited number of training examples of new classes, we
have a limited number of examples of buildings in a
new area.

Figure 3. The process of generating a training data set for
fine-tuning.

We attempted to fine-tune our base model, trained
on data set Igombe, Tanzania, to a selected site in
Cameroon. Following the methodology of Wang et al.
(2020), we generated fine-tuning data sets by combin-
ing an equal number of examples from training area
Igombe, Tanzania and examples from the data-scarce
region Bandjoun, Cameroon.

Figure 4. Workflow for comparing multiple fine-tuning
variants; the base model is tuned multiple times with dif-
ferent amounts of fine-tuning; Generating a fine-tuning
data set is shown on Figure 3.
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2.3 Experimental design

A total of six experiments was carried out (cf. table
2). The experiments varied i) the size of the additional
training data set for adapting to the new region and ii)
which parts of the network were allowed to vary in
the adaptation. For the later, two variants were tested
and compared: in addition to fixing parameters in the
feature extractor and fine-tuning only the classifier, as
proposed in Wang et al. (2020), we also tuned all pa-
rameters of the network (feature extractor weights not
fixed).

The amount of data needed from the new area to which
the base model is being tuned was assumed to be cru-
cial as well. Therefore, three different sizes of the fine-
tuning data set were tested: the size of the fine-tuning
data sets were 590, 200 and 60 with half of the exam-
ples from the base data set Igombe, Tanzania, which
then means the number of additional examples from
the Bandjoun, Cameroon was 295, 100 and 30, respec-
tively. The individual steps of how differently sized
tuning data sets are generated, used and evaluated, is
shown on Figure 4. Note that the process shown on the
figure was executed twice - once tuning only the clas-
sifier and once tuning the entire network as explained
in previous paragraph. As a result, we obtained six in-
dependent fine-tuned models. t

Table 2. Overview of fine-tuning experiments.

Model Fine-tuning Feature extractor
number data set size weights fixed

1 30+30 False
2 100+100 False
3 295+295 False
4 30+30 True
5 100+100 True
6 295+295 True

Finally, the six models and the base model were com-
pared and the model with the best performance (high-
est average f1-score, computed over the two validation
sets) was selected as the final tuned model, which was
then evaluated on three test sets and applied to a se-
lected area in Cameroon where buildings were missing
in OSM (shown on Figure 2).

2.4 Software and Data Availability

The Research data and code support-
ing this publication is available at
https://doi.org/10.6084/m9.figshare.14466288. For
implementations, we used Python 3.6 (Van Rossum
and Drake, 2009) and Tensorflow 1.14 (Abadi et al.,
2015) with the Tensorflow Object Detection API 1.

1https://github.com/tensorflow/models

Moreover, the pre-trained parameter for the building
detection model was downloaded from the Tensorflow
Object Detection API Model Zoo (Huang et al.,
2016). Data includes OSM building geometries
(building = ∗), and the Bing satellite imagery were
collected at zoom level 18 with via the Bing Maps
developer API 2.

3 Results

3.1 Comparison of fine-tuning variants

Applying the base model to the validation set Ndem,
Cameroon resulted in very poor results, specifically in
terms of recall and f1-score (cf. table 3). This aligns
with our hypothesis that a model’s performance de-
creases when used on data with different appearance
than the model’s training data. All six adjusted mod-
els performed much better, highlighting the value of
fine-tuning models with additional local training data.
As for performance on validation set Kalola, Tanza-
nia, located nearby where the base model was trained,
here the base model without any fine-tuning reached
the highest f1-score. However, differences in f1-score
were relatively small for this region.

When comparing results achieved by the six fine-
tuning variants, it shows that higher performance was
achieved when all model parameters were allowed to
be tuned during the adaptation training (models 1-3
in Table 2). For those three models, performance in-
creased further with the size of the additional train-
ing samples. However, differences in f1-score were rel-
atively small, indicating that even a small additional
training set improved model performance substantially
compared to the application of the unadjusted base
model.

As for the training progress, training models with addi-
tional training samples resulted in an immediate strong
increase in performance in the new, data-scarce region
in Cameroon (cf. apendix, Figures 6 and 7). For the
data-rich region Kalola, performance was quite stable
over the training period or showed even a slight de-
crease in f1-score with increased training period for
the small number of additional samples if all param-
eters of the network were allowed to vary. This sug-
gests only little training is required for the observed
improvement.

3.2 Evaluation of the final transferred model

Based on the results presented in Table 3, model 3
(specified in Table 2), was selected as the best perform-
ing variant of the fine-tuning experiments and evalu-
ated further on three test sets. The results are shown

2https://www.bingmapsportal.com/
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Table 3. Performance of all models on two validation sets.
The base model represents the model that was trained on
training data set Igombe, Tanzania, and applied to two
validation sets without further adjustments. Models 1-6
represent models that were fine-tuned to Cameroon (cf.
table 2). Precision, recall and f1-score are reported for
both validation sets.

Kalola, Tanzania Mbem, Cameroon

Model Prec. Rec. F1 Prec. Rec. F1

Base 0.913 0.865 0.889 0.966 0.045 0.086
1 0.881 0.810 0.844 0.934 0.752 0.833
2 0.869 0.830 0.848 0.922 0.776 0.842
3 0.859 0.887 0.873 0.946 0.786 0.859
4 0.842 0.879 0.860 0.909 0.721 0.804
5 0.848 0.874 0.861 0.939 0.682 0.791
6 0.840 0.879 0.859 0.896 0.730 0.805

in Table 4. Interestingly, f1-score values the model
achieved on all three test sets are higher than on the
validation set.

Also, it is notable that the model performed similarly
on all three test sets. The location of test sets was inten-
tionally selected so that each has a different distance
from the data set Bandjoun that was used to sample
training examples for fine-tuning the base model (as
seen on Figure 2. Per our hypothesis stated in the in-
troduction, the performance should decrease with in-
creasing distance from the training area. For the three
tests, however, this is not the case. This finding might
help to answer an important question: when a model
is fine-tuned - as in this study - with training examples
from Bandjoun, how far from Bandjoun can we use this
tuned model before performance starts to decrease? To
answer, a more detailed analysis needs to be carried
out, but the results in Table 3 show that applying the
fine-tuned model at distances of approximately 5, 15
and 30 kilometers (Djeve, Bamendjou and Batcham,
respectively) yield comparable results.

Table 4. Performance of a selected fine-tuned variant
(model 3) evaluated on three test sets.

Test area Precision Recall F1-score

Batcham 0.943 0.886 0.914
Djeve 0.938 0.884 0.910
Bamendjou 0.937 0.872 0.903

A visual inspection of a test area in Batcham,
Cameroon (c.f. Figure 5) shows that the model suc-
cessfully detected the majority of buildings. Two most
common sources of errors might be observed in the fig-
ure: first, buildings with relatively small footprints of-
ten remain undetected. On the upper image in Figure
5, the only two undetected buildings are significantly
smaller than the rest. This behavior was observed with

all tested models. Second, buildings located on the bor-
der of two or more image tiles were problematic. The
detector is designed to detect buildings on a single im-
age tile at a time. If multiple tiles contained parts of
a building, the building was often detected multiple
times. Although the image tiles’ borders are not visi-
ble, the two false positives (detections visualized with
red color) on the lower image of Figure 5 are examples
of this situation.

Figure 5. Visualization of results produced by model 3 in
a selected area in test area Batcham, Cameroon.

3.3 Missing OSM buildings

To demonstrate the capability of detecting missing
OSM buildings, the final selected model (model 3) was
then applied to a location where OSM building data
were missing completely (see Figure 2). With an area
of around 2.58 km2, the model detected 1192 build-
ings which were missing in OSM.

4 Conclusion

In this study, we proposed a novel method of detecting
buildings missing in OSM by transferring deep neural
networks to geographically remote regions with a lim-
ited amount of additional training data. We tested mul-
tiple variants of the method and demonstrated the ca-
pability of the proposed method by adopting a network
trained in Tanzania to a site in Cameroon. The building
detection model fine-tuned with 295 additional exam-
ples achieved an f1-score over 0.9 on all three test sets
in Cameroon. Finally, We used the fine-tuned model
to detect 1192 buildings missing in OSM within a se-
lected area of approx. 2.5 km2 in Cameroon.
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The proposed model can detect individual buildings by
generating bounding boxes around each of them. How-
ever, further volunteer contributions are still expected
with regard to mapping building footprints as well as
validation. Therefore, this work contributes to the ef-
forts towards machine-assisted humanitarian mapping
methods. Future works will focus on better facilitating
and supporting the OSM mapping community by es-
timating amounts of missing buildings or prioritizing
unmapped areas.
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Appendix

Figure 6. Training progress on the two validation sets -
only tuning the classifier.

Figure 7. Training progress on the validation sets - tuning
all parameters in the network.
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