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Abstract. In shared spaces, grouped pedestrians can
gain dominance and thus get the right of way from
vehicles more easily; grouping can make traffic
planning less complicated, e.g. it reduces the number of
agents that need to be considered while traffic planning.
However, grouping is not well investigated in shared
spaces given the dynamic environment and interactions
in mixed traffic. In this paper, we apply a dynamic
facility location algorithm based on appearance time,
origin, and destination of road users before crossing a
junction to explore an appropriate grouping strategy in
shared spaces, in order to improve the safety and
efficiency of traffic.
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1 Introduction

The concept of "shared space" is first introduced in the
70s by Dutch traffic engineer Hans Monderman by
forcing vehicles to decelerate when they pass through a
mixed traffic environment, to address traffic safety
problems in Netherlands (Hamilton-Baillie, 2004). The
term became popular, especially in Western Europe,
due to the INTERREG IIIB North Sea Project (Shared
Space, 2005). According to a definition provided by
Karndacharuk et al. (2014), shared space is "a public
local street or intersection that is intended and designed
to be used by pedestrians and vehicles in a consistently
low-speed environment with no obvious physical
segregation between various road users to create a sense
of place, and facilitate multi-functions".

Typical design of shared spaces reduces the separation
between all road users by removing traffic signals (e.g.
road signs, markings, and traffic lights). In this way, the
intensive interactions between all road users force the
drivers to drive at a limited speed, which leads to the
increment of priority and safety for other road users
(e.g. pedestrians and cyclists). Compared to
conventional traffic designs, shared spaces create a

pedestrian-friendly environment with fewer congestions
(Monderman et al., 2006).

However, some studies indicate an increased risk at
higher traffic volumes in shared spaces (Quimby and
Castle, 2006; Reid et al., 2009). Apart from safety
aspects, currently shared spaces have efficiency
problems as well: the bottleneck effect happens when
traffic density is high (Moody et al., 2014). Therefore,
developing an algorithm to increase the safety and
efficiency of shared spaces is necessary.

In urban traffic, road users are often found moving in
groups. These groups can be formed for different
reasons. For instance, social connections (e.g. friends,
couples, families) between pedestrians; mixed groups
formed by traffic regulations, i.e. road users who follow
the same phase of traffic lights, etc. The members of the
same group interact differently to other road users in
comparison to individuals (Aveni, 1977), and they tend
to keep similar speed and appropriate distance
(Yamaguchi et al., 2011).

An obvious benefit that comes from grouping is safety.
Being in a group creates a buddy system where people
can look after one another on the streets. Jacobsen
(2003) found that people walking and bicycling in larger
groups are less likely to be injured by motorists because
the motorists are more cautious with groups. It will also
have a beneficial effect on traffic planning: if groups
are formed, this leads to a reduction in the number of
road users that have to be included in computations,
thus leading to a decrease in computational complexity
for later applications, e.g. for traffic simulation and
pedestrian navigation.

With the background above, we can conclude that the
formation of road user groups before and during
crossing can improve the safety and efficiency in shared
spaces. Here, a group is a formation of road users
moving in a coordinated manner.

However, forming groups is not a trivial task in shared
spaces. Firstly, shared spaces have no road markings
such as zebra lines or lane markers, thus the location
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and number of groups should be decided, which is
different from most area traffic management methods
(Qadri et al., 2020; Ramadhan et al., 2020). Secondly,
in shared spaces, the coming and leaving spots of road
users may vary dramatically in different periods,
therefore, a dynamic clustering algorithm for group
formation is needed.

Different approaches to data stream clustering have
been proposed since the 90s (Aggarwal et al., 2003;
Kranen et al., 2011). These approaches typically use a
two-phase process: firstly, taking the raw data stream in
real-time to produce potential cluster centers; secondly,
the tentative centers are used offline to generate the
clusters with all the data. This two-stage process is
necessary, as there is no adaptation of identified clusters,
which leads to a strong dependency on the sequence of
processing. Later, the so-called fully dynamic clustering
algorithm considered both insertion and deletion of data
(Cohen-Addad et al., 2016; Chan et al., 2018).

Clustering a set of points in a metric space can be
viewed as a facility location problem, which involves
the following general setting: giving a set of demand
points and a set of candidate facility sites with costs of
building facilities at each of them, the goal is to select a
subset of sites where facilities should be built. Each
demand point is then assigned to the closest facility,
incurring a service cost equal to the distance to its
assigned facility. The objective is to minimize the sum
of facility costs and the sum of the service costs for the
demand points (Charikar and Guha, 1999).

Our application can be formulated as a series of facility
location problems, as the number/locations of group
centers are not fixed and the road wusers are
inserted/deleted continuously. However, solving such a
series of problems all at once is NP-hard, so the best
strategy is to use an algorithm with a provable
approximation of the best solution.

Adam Meyerson presented an online facility location
algorithm with O(1)-complexity (Meyerson, 2001). The
algorithm is straightforward - when a new demand point
arrives, the distance d between the point and the closest
already-open facility is measured. The opening cost for
a facility is f. With probability d/f (or probability 1, if
d/f is > 1), a new facility opens at the demand point.
Otherwise, the point will be assigned to the closest open
facility.

Cohen-Addad et al. (2019) clustered dynamic and
consistent points with a sliding window. The algorithm
also uses a two-phase process. Firstly, the coarse
solution is given by Meyerson’s algorithm using the

points in the window. The cost of the coarse solution is
0. Secondly, the window slides, and maintains a solution
during 6/(40f) times of updates, and then recomputes
from another coarse solution. As the window slides,
each time a new point is inserted, and the last point of
the window is deleted. The new coming data point either
becomes a new facility if it is far away from all existing
facilities or is assigned to the closest facility. When
deletion happens, the algorithm removes the cost of the
deleted point. The drawback of the algorithm is obvious:
in real-world applications, one might deal with the
application with arbitrary insertion and deletion, i.e. the
oldest point does not leave its cluster, in other words, it
still maintains the service cost (Chan et al. 2018), rather
than delete it. Moreover, the algorithm only recomputes
when the cost reaches a cost threshold, which may not
suitable for many applications.

The main criterion for designing a dynamic algorithm is
the quality of the clustering compared with the offline
optimal solutions at any moment. However, maintaining
a consistent clustering, i.e. a clustering with bounded
recourse (the number of changes per update) is equally
important in many applications. For instance, Gupta et
al. (2016) considered the running time of the algorithm
making updates (update time) as well as the number of
updates made to the solution (recourse) for an online
and dynamic set cover algorithm. Lattanzi and
Vassilvitskii (2017) considered maintaining a constant
factor approximate solution while minimizing the total
number of times the maintained solution changes over
the whole update process.

In this paper, we introduce a hypothetical system, which
is aimed at encouraging road users to form groups when
it is viable. The whole process works as follows: before
crossing a shared space, a set of road users who have
similar origins and destinations during a variable time
range will become a group. This time range is called a
period. A period can contain several groups, each group
has one user as its center. A road user can wait for some
time to form a group with the others. But if s/he is
spatially or temporally far away from the others, s/he
will become a single-member group.

We are searching for a dynamic clustering algorithm to
group road users according to their origins, destinations,
appearance time, and also their planned path, to improve
the safety and efficiency of shared spaces. To this end,
we extend the approach of Cohen-Addad et al., (2019)
by adding parameter waiting time and changing the cost
function.
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2 Methodology

In the following, we present a definition suitable for
shared spaces. Assuming a stream of road users X who
come continuously and independently from all
directions of a shared space. For each road user, the
coordinates of its origin (ox, oy), destination (dx, dy),
and appearance time ¢ are known. All road users have a
maximum static waiting time w before crossing.
Besides, there are two global parameters, namely batch
size h and iteration time n to determine the coarse
solution (see subsection 2.1), and a cost f'to establish a
new group center. The total cost C of each period
consists of the construction cost of all opened group
centers and the cost to integrate surrounding group
members to their corresponding centers (the distance
between each group member points to its center, see
subsection 2.2).

2.1 Coarse solution

Algorithm 1: Dynamic facility location for shared spaces

Input: A set of data X including OD and appearing time ¢
for each road user

Output: A set of centers F at each period, an assignment
B of point to centers, cost per period C

ub = Ib = 0 // upper/lower bound of current data batch

while X is not empty do
At typ -ty
if A4t > w then
// compute new centers because of waiting time
remove first item from X until max time interval < A¢
(corresponding upperbound is new ub)
compute centers with removed items via
MeyersonManyTimes
add centers to
add construction cost and intergration cost to C
Ib=1b+ 1, ub=new ub
else
take the first /4 items
if current time - last recompute time > 6/4f then
// recompute because of cost criteria
recompute centers by MeyersonManyTimes
add centers to F’
add construction cost and assignment cost
else
if min(ODsimilarity) < f'then
// integrate to the closest center
add integration cost to C
break
else
// center addition
add the A" item of X to F/
add fto C
end
end
Ib=1b+1, ub=ub+h
end
end

Similar as the Cohen-Addad's algorithm, before any
computation, our algorithm will take the first /4 data,
shuffle them, and run Meyerson’s algorithm (Meyerson,
2001) independently n times. The solution of group
centers with the lowest cost will become the coarse
solution (hereafter referred to as MeyersonManyTimes).

2.2 Similarity measure

The distance metric to estimate the spatial similarity
between two road users is the sum of the Euclidean
distances between the two origin points and the two
destination points (hereafter referred to as ODsimilarity,

see Eq. (1)).

ODsimilarity = j(oxl — 0xp)* + (0y; —0y)* +

j(dx1 = dx,)? + (dy, — dy,)? (1)

2.3 Dynamic facility location for shared
spaces

Our algorithm works as follows: starting with the first
h items of the dataset, if the time interval of the 1% and
h' item is less than the waiting time w, the coarse
solution is calculated with MeyersonManyTimes
(centers compute); if the time interval is larger than w,
the initial points are split to make sure the new time
interval is smaller or equal to w, then
MeyersonManyTimes is applied.

The construction cost of calculated centers and the
integration cost are accumulated to the total cost C. As
the coarse solution (a set of group centers) is ready, the
new coming users are inserted one by one. The distance
between a new user to all existing group centers is
calculated via ODsimilarity. If the minimum
distance d is larger than the center construction cost f; a
new center is built at the location of the new point
(center addition), the cost C increases by one center's
cost f; otherwise, the new point will be assigned to its
closest center, and the integration cost d is added to the
total cost C. Any operation (centers compute/ center
addition/ user integration) is called update. Centers
update will continue until the update time since the last
recomputation reaches the threshold of 6/(4f)! or the
time interval is larger than w. The cost C is eliminated
when current period ends. Then MeyersonManyTimes
is run and the whole process is started again. More
details are shown in Alg. 1.

!'see Cohen-Addad et al. (2019), for explanation of this value.
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2.4 Software and Data Availability

The first video of the scenario "DeathCircle" of the
Stanford Drone Dataset (Robicquet et al., 2016) is used
to apply all the operations. The video contains 703 road
users and lasts about 7 minutes. The frame rate is 30
fps. After being filtered via labels to make sure there are
no lost or occluded trajectory points, 663 valid
trajectories are left. The origin and destination (Fig. 1)
and appearance time are extracted as input for the
experiment.
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Figure 1: The OD plots of the Stanford Drone Dataset
(colors represent different user types: red: pedestrian,
cart: green, biker: blue, skater: yellow, x and y axis are
relative image coordinates)

The proposed methods were implemented in Python.
All experiments were performed on a computer with the
CPU Intel Core 15-8250U CPU @ 1.60GHz x 8 and
Memory 7.7 GiB. The code is available at Github.

3 Experiments and Results

In this section, we evaluate our algorithm by varying
and adjusting facility opening cost f, waiting time w,
and batch size 4. We also compare the algorithm against
two other algorithms, i.e. Meyerson’s algorithm and the
original framework from Cohen-Addad. As part of the
re-computation step between two periods, we set n to 5,
i.e. run independently Meyerson’s algorithm five times,
and select the execution with the lowest cost.

Three aspects are considered as criteria, namely
calculation time for the whole dataset, average cost per
update, and the total number of centers that ever opened.
The smaller the value of these criteria, the better the
effect of the algorithm.

Moreover, we calculated three intuitive indicators,
namely average group size, maximum group size, and
the space-saving rate for a better understanding of the
results. Average group size calculates the average

number of members per group, the closer this value is
to 1, the worse the team effect is; the maximum group
size is the number of members of the largest group;
space-saving rate is defined as the reduction in size
relative to the ungrouped size, the larger this rate, the
more the users in the group.

3.1 Parameters and results

The facility opening cost f restricts the distance between
two road users. A higher value of f produces bigger
groups and speeds up the computation of the groups.
However, the value of f'depends on the dataset as well.
For instance, in DeathCircle, the lane width is about 100
(image coordinates, roughly corresponding to 4 m in
reality). To group the road users from the same lane, f
is set to 200, which allows a maximum distance between
starting and endpoints of 100, each.

Waiting time w decides how long users wait for others
to form a group. In Tab. 1, batch size 4 is set to 30, the
value of w is varied from Ss, 30s, to 60s, respectively to
check the influence on the formed groups. From the
intuitive indicators, we can see that higher values of w
can form fewer groups with more group members,
which leads to a higher cost and computation time, but
fewer opened centers.

average group 4
w size / maximum calcula- | average
. centers .

group size / tion cost per
[s] space-savin ever time [s] update
P 8 opened P
rate
5 1.22/4/15% 517 0.43 2099.9
30 1.87/21/43% 320 0.62 10519.8
60 | 2.27/26/55% 314 0.74 17367.5

Table 1: Effect of waiting time w (=200 and /#=30)

The batch size & determines the number of users to be
selected for recomputation between two periods. For
large or adversary dataset which has complex ground
truth, / should be large enough to avoid bias. In an
extreme case, i.e. 1 = 1, there will be no coarse solution
before each period, which means the road user who
comes first will become the center of the group. It can
bring benefits to time efficiency and average cost, but
the recourse will increase sharply. Typically, 4 is also
related to the layout of the scene, e.g. shape of the lanes
and potential access points to it. For instance, in the
DeathCircle, most road users follow the shape of the
lanes or exit from buildings, thus the entering and
exiting locations are rather static, which can help to
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decide the value of /4. At Tab. 2, we fixed f'to 200 and
w to 30 seconds, as they hold group size with a relatively
small number of opened centers and average update
cost. As a result, the average group size and space-
saving rate appeared to be unaffected by the value of /.
However, as expected before, the larger the value of 4,
the more effort is needed to calculate a coarse solution,
which leads to higher calculation time and update cost,
but less recourse.

average group 4
size / maximum calcula- | average
. centers .
h group size / ever tion cost per
space-saving opened time [s] update
rate

10 | 1.85/11/44% 416 0.32 4271.8
20 | 2.02/17/49% 363 0.53 7787.6
30 | 1.88/19/43% 320 0.88 10566.3

Table 2: Effect of batch size /# (=200 and w=30)

Considering the results and discussion above, the
parameters should be adjusted according to different
needs of road users and urban traffic planners, e.g. how
long should people wait (w)? How far are they willing
to go to become a group (f)? Is my dataset adversary
(h)? Therefore, we selected a reasonable parameter set
f, wand h as 200, 30 and 10. It results in a minimum of
13 groups and a maximum of 33 groups, and the largest
group contains 11 members. The average group size is
1.85 and 44% space was saved by forming groups.
These parameters are also utilized in subsection 3.3 to
compare the results from different algorithms.

Fig. 2 shows the grouping results of one example period
in DirthCircle. The trajectories with the same color
belong to the same group. The colored crosses indicate
the centers of corresponding groups. There are 11
groups, 8 of them contain only one road user, and the
largest group (the blue trajectories from the left side of
the figure) has 5 members.

Another interesting question is when almost all the road
users are included in groups that contain at least two
members. Since /# does not affect users’ aggregation,
after testing multiple sets of parameters, we set f'to 300,
and w to 23.6 seconds to make the average group size
over 2. In other words, a road user will move a
maximum of 6m and wait for 23.6s to form a group with
the others.

Figure 2: Grouping result of one period (21 users and 11
groups), the largest group has 5 members

3.2 Comparision with other algorithms

Using the parameters decided in subsection 3.2, we
generate the plots for cost and running time per update
against Meyerson’s algorithm and the Cohen-Addad's
algorithm, see Fig. 3.

The cost of Meyerson’s algorithm has a linear
dependency on the number of updates because it never
deletes road users. This is also the advantage of our
algorithm. By restricting the waiting time and cost
criteria, the insertion and deletion of road users happen
continuously, which keeps the cost in a low range.
Comparing to Cohen-Addad’s, our algorithm has
additional recompute criteria and deletion conditions,
but still keeps a similar cost per update.

Our algorithm has less running time than Cohen-
Addad’s, as the waiting time restricts the number of
calculated points per update. The average improvement
of the single update compared with Cohen-Addad's is
about 35.3%. Compared to Meyerson’s algorithm, ours
is slower initially, but as the number of processed road
users increases, the slope of running time for
Meyerson’s algorithm is larger than our method, as it
never removes a group center once it has been opened,
the time to compute the distance metrics from new
coming road users to all existing group centers is
therefore increasing.

Considering the recourse, ours has a similar number of
opened centers with Cohen-Addad's, and both are worse
than Meyerson's, as it will never close the opened
centers, new arrivals are getting more and more difficult
to build a new center.
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4. Discussion

In this section, we will discuss some interesting parts
for optimizing the parameters w, f, h, and potential
aspects for improvement.
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Figure 3: Comparision of cost, number of opened facilities
and running time per update against Meyerson’s
algorithm and the Cohen-Addad's algorithm

In the previous section, we have shown that waiting
time w and cost f are two important factors to form a
group. However, in general, they need to be carefully
considered according to traffic management studies.

For a sparse traffic scenario that has low traffic flow, it
is not necessary to apply the method, because people

need a trade-off between waiting time and forming
group, and in a sparse dataset, there is no need for
grouping, as conflicts between road users are less likely.

A possible extension of the approach is to also take into
consideration the intermediate points of the road users
in the group forming process. In the example of Fig. 4,
we can replace the ODsimilarity with the symmetrical
Hausdorft distance (Edwards, 1975) calculated from
intermediate points of pairwise trajectories. In this way,
dedicated, separate paths between the same origin and
destination could be realized and thus adapt better to the
plans of the users.

Figure 4: Benefit from Hausdorff distance (sperate the
users who have similar OD but different waypoints)

One drawback of the method is that it cannot deal with
the splitting and merging of groups. Recall the light
blue and orange groups coming from the top direction
in Fig. 2, which started from the same lane but separated
after passing through the roundabout. This would
involve to cluster also partial trajectories and is subject
to future work.

5. Conclusion and future work

In this paper, we proposed a dynamic facility location
method to cluster road users who have similar OD and
entering time in a shared space. In future work, we will
adopt this method for all kinds of road users by
integrating average velocities to the distance metric and
include trajectories to deal with the splitting and
merging cases. Furthermore, we will investigate how
additional constraints and requirements could be
integrated into the approach, to be able to apply it for a
traffic organization of a junction or a shared space.
Among others, this relates to identifying persistent
clusters over time or with a certain spatio-temporal
pattern, which would lead to an adaptation of the
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identification of coarse clusters. Furthermore, the group
formation has to be integrated into the traffic planning
of the whole junction. Another investigation will deal
with the aspect of partial clustering to allow groups to
split and merge in order to maximize the benefits of
groups.
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