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Abstract. In shared spaces, grouped pedestrians cangain dominance and thus get the right of way fromvehicles more easily; grouping can make trafficplanning less complicated, e.g. it reduces the number ofagents that need to be considered while traffic planning.However, grouping is not well investigated in sharedspaces given the dynamic environment and interactionsin mixed traffic. In this paper, we apply a dynamicfacility location algorithm based on appearance time,origin, and destination of road users before crossing ajunction to explore an appropriate grouping strategy inshared spaces, in order to improve the safety andefficiency of traffic.
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1 Introduction
The concept of "shared space" is first introduced in the70s by Dutch traffic engineer Hans Monderman byforcing vehicles to decelerate when they pass through amixed traffic environment, to address traffic safetyproblems in Netherlands (Hamilton-Baillie, 2004). Theterm became popular, especially in Western Europe,due to the INTERREG IIIB North Sea Project (SharedSpace, 2005). According to a definition provided byKarndacharuk et al. (2014), shared space is "a publiclocal street or intersection that is intended and designedto be used by pedestrians and vehicles in a consistentlylow-speed environment with no obvious physicalsegregation between various road users to create a senseof place, and facilitate multi-functions".
Typical design of shared spaces reduces the separationbetween all road users by removing traffic signals (e.g.road signs, markings, and traffic lights). In this way, theintensive interactions between all road users force thedrivers to drive at a limited speed, which leads to theincrement of priority and safety for other road users(e.g. pedestrians and cyclists). Compared toconventional traffic designs, shared spaces create a

pedestrian-friendly environment with fewer congestions(Monderman et al., 2006).
However, some studies indicate an increased risk athigher traffic volumes in shared spaces (Quimby andCastle, 2006; Reid et al., 2009). Apart from safetyaspects, currently shared spaces have efficiencyproblems as well: the bottleneck effect happens whentraffic density is high (Moody et al., 2014). Therefore,developing an algorithm to increase the safety andefficiency of shared spaces is necessary.
In urban traffic, road users are often found moving ingroups. These groups can be formed for differentreasons. For instance, social connections (e.g. friends,couples, families) between pedestrians; mixed groupsformed by traffic regulations, i.e. road users who followthe same phase of traffic lights, etc. The members of thesame group interact differently to other road users incomparison to individuals (Aveni, 1977), and they tendto keep similar speed and appropriate distance(Yamaguchi et al., 2011).
An obvious benefit that comes from grouping is safety.Being in a group creates a buddy system where peoplecan look after one another on the streets. Jacobsen(2003) found that people walking and bicycling in largergroups are less likely to be injured by motorists becausethe motorists are more cautious with groups. It will alsohave a beneficial effect on traffic planning: if groupsare formed, this leads to a reduction in the number ofroad users that have to be included in computations,thus leading to a decrease in computational complexityfor later applications, e.g. for traffic simulation andpedestrian navigation.
With the background above, we can conclude that theformation of road user groups before and duringcrossing can improve the safety and efficiency in sharedspaces. Here, a group is a formation of road usersmoving in a coordinated manner.
However, forming groups is not a trivial task in sharedspaces. Firstly, shared spaces have no road markingssuch as zebra lines or lane markers, thus the location
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and number of groups should be decided, which isdifferent from most area traffic management methods(Qadri et al., 2020; Ramadhan et al., 2020). Secondly,in shared spaces, the coming and leaving spots of roadusers may vary dramatically in different periods,therefore, a dynamic clustering algorithm for groupformation is needed.
Different approaches to data stream clustering havebeen proposed since the 90s (Aggarwal et al., 2003;Kranen et al., 2011). These approaches typically use atwo-phase process: firstly, taking the raw data stream inreal-time to produce potential cluster centers; secondly,the tentative centers are used offline to generate theclusters with all the data. This two-stage process isnecessary, as there is no adaptation of identified clusters,which leads to a strong dependency on the sequence ofprocessing. Later, the so-called fully dynamic clusteringalgorithm considered both insertion and deletion of data(Cohen-Addad et al., 2016; Chan et al., 2018).
Clustering a set of points in a metric space can beviewed as a facility location problem, which involvesthe following general setting: giving a set of demandpoints and a set of candidate facility sites with costs ofbuilding facilities at each of them, the goal is to select asubset of sites where facilities should be built. Eachdemand point is then assigned to the closest facility,incurring a service cost equal to the distance to itsassigned facility. The objective is to minimize the sumof facility costs and the sum of the service costs for thedemand points (Charikar and Guha, 1999).
Our application can be formulated as a series of facilitylocation problems, as the number/locations of groupcenters are not fixed and the road users areinserted/deleted continuously. However, solving such aseries of problems all at once is NP-hard, so the beststrategy is to use an algorithm with a provableapproximation of the best solution.
Adam Meyerson presented an online facility locationalgorithm with O(1)-complexity (Meyerson, 2001). Thealgorithm is straightforward - when a new demand pointarrives, the distance d between the point and the closestalready-open facility is measured. The opening cost fora facility is f. With probability d/f (or probability 1, ifd/f is > 1), a new facility opens at the demand point.Otherwise, the point will be assigned to the closest openfacility.
Cohen-Addad et al. (2019) clustered dynamic andconsistent points with a sliding window. The algorithmalso uses a two-phase process. Firstly, the coarsesolution is given by Meyerson’s algorithm using the

points in the window. The cost of the coarse solution isθ. Secondly, the window slides, and maintains a solutionduring θ/(4αf) times of updates, and then recomputesfrom another coarse solution. As the window slides,each time a new point is inserted, and the last point ofthe window is deleted. The new coming data point eitherbecomes a new facility if it is far away from all existingfacilities or is assigned to the closest facility. Whendeletion happens, the algorithm removes the cost of thedeleted point. The drawback of the algorithm is obvious:in real-world applications, one might deal with theapplication with arbitrary insertion and deletion, i.e. theoldest point does not leave its cluster, in other words, itstill maintains the service cost (Chan et al. 2018), ratherthan delete it. Moreover, the algorithm only recomputeswhen the cost reaches a cost threshold, which may notsuitable for many applications.
The main criterion for designing a dynamic algorithm isthe quality of the clustering compared with the offlineoptimal solutions at any moment. However, maintaininga consistent clustering, i.e. a clustering with boundedrecourse (the number of changes per update) is equallyimportant in many applications. For instance, Gupta etal. (2016) considered the running time of the algorithmmaking updates (update time) as well as the number ofupdates made to the solution (recourse) for an onlineand dynamic set cover algorithm. Lattanzi andVassilvitskii (2017) considered maintaining a constantfactor approximate solution while minimizing the totalnumber of times the maintained solution changes overthe whole update process.
In this paper, we introduce a hypothetical system, whichis aimed at encouraging road users to form groups whenit is viable. The whole process works as follows: beforecrossing a shared space, a set of road users who havesimilar origins and destinations during a variable timerange will become a group. This time range is called aperiod. A period can contain several groups, each grouphas one user as its center. A road user can wait for sometime to form a group with the others. But if s/he isspatially or temporally far away from the others, s/hewill become a single-member group.
We are searching for a dynamic clustering algorithm togroup road users according to their origins, destinations,appearance time, and also their planned path, to improvethe safety and efficiency of shared spaces. To this end,we extend the approach of Cohen-Addad et al., (2019)by adding parameter waiting time and changing the costfunction.
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1 see Cohen-Addad et al. (2019), for explanation of this value.

2 Methodology
In the following, we present a definition suitable forshared spaces. Assuming a stream of road users X whocome continuously and independently from alldirections of a shared space. For each road user, thecoordinates of its origin (ox, oy), destination (dx, dy),and appearance time t are known. All road users have amaximum static waiting time w before crossing.Besides, there are two global parameters, namely batchsize h and iteration time n to determine the coarsesolution (see subsection 2.1), and a cost f to establish anew group center. The total cost C of each periodconsists of the construction cost of all opened groupcenters and the cost to integrate surrounding groupmembers to their corresponding centers (the distancebetween each group member points to its center, seesubsection 2.2).
2.1 Coarse solution

Similar as the Cohen-Addad's algorithm, before anycomputation, our algorithm will take the first h data,shuffle them, and run Meyerson’s algorithm (Meyerson,2001) independently n times. The solution of groupcenters with the lowest cost will become the coarsesolution (hereafter referred to as MeyersonManyTimes).
2.2 Similarity measure
The distance metric to estimate the spatial similaritybetween two road users is the sum of the Euclideandistances between the two origin points and the twodestination points (hereafter referred to as ODsimilarity,see Eq. (1)).
𝑂𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = (𝑜𝑥1 − 𝑜𝑥2)2 + (𝑜𝑦1 − 𝑜𝑦2)2 +

(𝑑𝑥1 − 𝑑𝑥2)2 + (𝑑𝑦1 − 𝑑𝑦2)2                                      (1)

2.3 Dynamic facility location for sharedspaces
Our algorithm works as follows: starting with the firsth items of the dataset, if the time interval of the 1st andhth item is less than the waiting time w, the coarsesolution is calculated with MeyersonManyTimes(centers compute); if the time interval is larger than w,the initial points are split to make sure the new timeinterval is smaller or equal to w, thenMeyersonManyTimes is applied.
The construction cost of calculated centers and theintegration cost are accumulated to the total cost C. Asthe coarse solution (a set of group centers) is ready, thenew coming users are inserted one by one. The distancebetween a new user to all existing group centers iscalculated via ODsimilarity. If the minimumdistance d is larger than the center construction cost f, anew center is built at the location of the new point(center addition), the cost C increases by one center'scost f; otherwise, the new point will be assigned to itsclosest center, and the integration cost d is added to thetotal cost C. Any operation (centers compute/ centeraddition/ user integration) is called update. Centersupdate will continue until the update time since the lastrecomputation reaches the threshold of θ/(4f)1 or thetime interval is larger than w. The cost C is eliminatedwhen current period ends. Then MeyersonManyTimesis run and the whole process is started again. Moredetails are shown in Alg. 1.

Algorithm 1: Dynamic facility location for shared spaces
Input: A set of data X including OD and appearing time tfor each road user
Output: A set of centers F at each period, an assignmentB of point to centers, cost per period C
ub = lb = 0 // upper/lower bound of current data batch
while X is not empty doΔt← tub - tlbif Δt > w then// compute new centers because of waiting timeremove first item from X until max time interval < Δt(corresponding upperbound is new ub)compute centers with removed items viaMeyersonManyTimesadd centers to Fadd construction cost and intergration cost to Clb = lb + 1, ub = new ubelsetake the first h itemsif current time - last recompute time > θ/4f then// recompute because of cost criteriarecompute centers by MeyersonManyTimesadd centers to Fadd construction cost and assignment costelseif min(ODsimilarity) < f then// integrate to the closest centeradd integration cost to Cbreakelse// center additionadd the hth item of X to Fadd f to Cendendlb = lb + 1, ub = ub + hendend

Algorithm 1: Dynamic facility location for shared spaces
Input: A set of data X including OD and appearing time tfor each road user
Output: A set of centers F at each period, an assignmentB of point to centers, cost per period C
ub = lb = 0 // upper/lower bound of current data batch
while X is not empty doΔt← tub - tlbif Δt > w then// compute new centers because of waiting timeremove first item from X until max time interval < Δt(corresponding upperbound is new ub)compute centers with removed items viaMeyersonManyTimesadd centers to Fadd construction cost and intergration cost to Clb = lb + 1, ub = new ubelsetake the first h itemsif current time - last recompute time > θ/4f then// recompute because of cost criteriarecompute centers by MeyersonManyTimesadd centers to Fadd construction cost and assignment costelseif min(ODsimilarity) < f then// integrate to the closest centeradd integration cost to Cbreakelse// center additionadd the hth item of X to Fadd f to Cendendlb = lb + 1, ub = ub + hendend
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2.4 Software and Data Availability
The first video of the scenario "DeathCircle" of theStanford Drone Dataset (Robicquet et al., 2016) is usedto apply all the operations. The video contains 703 roadusers and lasts about 7 minutes. The frame rate is 30fps. After being filtered via labels to make sure there areno lost or occluded trajectory points, 663 validtrajectories are left. The origin and destination (Fig. 1)and appearance time are extracted as input for theexperiment.

Figure 1: The OD plots of the Stanford Drone Dataset(colors represent different user types: red: pedestrian,cart: green, biker: blue, skater: yellow, x and y axis arerelative image coordinates)
The proposed methods were implemented in Python.All experiments were performed on a computer with theCPU Intel Core i5-8250U CPU @ 1.60GHz × 8 andMemory 7.7 GiB. The code is available at Github.

3 Experiments and Results
In this section, we evaluate our algorithm by varyingand adjusting facility opening cost f, waiting time w,and batch size h. We also compare the algorithm againsttwo other algorithms, i.e. Meyerson’s algorithm and theoriginal framework from Cohen-Addad. As part of there-computation step between two periods, we set n to 5,i.e. run independently Meyerson’s algorithm five times,and select the execution with the lowest cost.
Three aspects are considered as criteria, namelycalculation time for the whole dataset, average cost perupdate, and the total number of centers that ever opened.The smaller the value of these criteria, the better theeffect of the algorithm.
Moreover, we calculated three intuitive indicators,namely average group size, maximum group size, andthe space-saving rate for a better understanding of theresults. Average group size calculates the average

number of members per group, the closer this value isto 1, the worse the team effect is; the maximum groupsize is the number of members of the largest group;space-saving rate is defined as the reduction in sizerelative to the ungrouped size, the larger this rate, themore the users in the group.
3.1 Parameters and results
The facility opening cost f restricts the distance betweentwo road users. A higher value of f produces biggergroups and speeds up the computation of the groups.However, the value of f depends on the dataset as well.For instance, in DeathCircle, the lane width is about 100(image coordinates, roughly corresponding to 4 m inreality). To group the road users from the same lane, fis set to 200, which allows a maximum distance betweenstarting and endpoints of 100, each.
Waiting time w decides how long users wait for othersto form a group. In Tab. 1, batch size h is set to 30, thevalue of w is varied from 5s, 30s, to 60s, respectively tocheck the influence on the formed groups. From theintuitive indicators, we can see that higher values of wcan form fewer groups with more group members,which leads to a higher cost and computation time, butfewer opened centers.

w
[s]

average groupsize / maximumgroup size /space-savingrate

#centerseveropened
calcula-tiontime [s]

averagecost perupdate

5 1.22 / 4 / 15% 517 0.43 2099.9
30 1.87 / 21 / 43% 320 0.62 10519.8
60 2.27 / 26 / 55% 314 0.74 17367.5

Table 1: Effect of waiting time w (f=200 and h=30)
The batch size h determines the number of users to beselected for recomputation between two periods. Forlarge or adversary dataset which has complex groundtruth, h should be large enough to avoid bias. In anextreme case, i.e. h = 1, there will be no coarse solutionbefore each period, which means the road user whocomes first will become the center of the group. It canbring benefits to time efficiency and average cost, butthe recourse will increase sharply. Typically, h is alsorelated to the layout of the scene, e.g. shape of the lanesand potential access points to it. For instance, in theDeathCircle, most road users follow the shape of thelanes or exit from buildings, thus the entering andexiting locations are rather static, which can help to
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decide the value of h. At Tab. 2, we fixed f to 200 andw to 30 seconds, as they hold group size with a relativelysmall number of opened centers and average updatecost. As a result, the average group size and space-saving rate appeared to be unaffected by the value of h.However, as expected before, the larger the value of h,the more effort is needed to calculate a coarse solution,which leads to higher calculation time and update cost,but less recourse.

h
average groupsize / maximumgroup size /space-savingrate

#centerseveropened
calcula-tiontime [s]

averagecost perupdate

10 1.85 / 11 / 44% 416 0.32 4271.8
20 2.02 / 17 / 49% 363 0.53 7787.6
30 1.88 / 19 / 43% 320 0.88 10566.3
Table 2: Effect of batch size h (f=200 and w=30)
Considering the results and discussion above, theparameters should be adjusted according to differentneeds of road users and urban traffic planners, e.g. howlong should people wait (w)? How far are they willingto go to become a group (f)? Is my dataset adversary(h)? Therefore, we selected a reasonable parameter setf, w and h as 200, 30 and 10. It results in a minimum of13 groups and a maximum of 33 groups, and the largestgroup contains 11 members. The average group size is1.85 and 44% space was saved by forming groups.These parameters are also utilized in subsection 3.3 tocompare the results from different algorithms.
Fig. 2 shows the grouping results of one example periodin DirthCircle. The trajectories with the same colorbelong to the same group. The colored crosses indicatethe centers of corresponding groups. There are 11groups, 8 of them contain only one road user, and thelargest group (the blue trajectories from the left side ofthe figure) has 5 members.
Another interesting question is when almost all the roadusers are included in groups that contain at least twomembers. Since h does not affect users’ aggregation,after testing multiple sets of parameters, we set f to 300,and w to 23.6 seconds to make the average group sizeover 2. In other words, a road user will move amaximum of 6m and wait for 23.6s to form a group withthe others.

Figure 2: Grouping result of one period (21 users and 11groups), the largest group has 5 members
3.2 Comparision with other algorithms
Using the parameters decided in subsection 3.2, wegenerate the plots for cost and running time per updateagainst Meyerson’s algorithm and the Cohen-Addad'salgorithm, see Fig. 3.
The cost of Meyerson’s algorithm has a lineardependency on the number of updates because it neverdeletes road users. This is also the advantage of ouralgorithm. By restricting the waiting time and costcriteria, the insertion and deletion of road users happencontinuously, which keeps the cost in a low range.Comparing to Cohen-Addad’s, our algorithm hasadditional recompute criteria and deletion conditions,but still keeps a similar cost per update.
Our algorithm has less running time than Cohen-Addad’s, as the waiting time restricts the number ofcalculated points per update. The average improvementof the single update compared with Cohen-Addad's isabout 35.3%. Compared to Meyerson’s algorithm, oursis slower initially, but as the number of processed roadusers increases, the slope of running time forMeyerson’s algorithm is larger than our method, as itnever removes a group center once it has been opened,the time to compute the distance metrics from newcoming road users to all existing group centers istherefore increasing.
Considering the recourse, ours has a similar number ofopened centers with Cohen-Addad's, and both are worsethan Meyerson's, as it will never close the openedcenters, new arrivals are getting more and more difficultto build a new center.
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4. Discussion
In this section, we will discuss some interesting partsfor optimizing the parameters w, f, h, and potentialaspects for improvement.

Figure 3: Comparision of cost, number of opened facilitiesand running time per update against Meyerson’salgorithm and the Cohen-Addad's algorithm
In the previous section, we have shown that waitingtime w and cost f are two important factors to form agroup. However, in general, they need to be carefullyconsidered according to traffic management studies.
For a sparse traffic scenario that has low traffic flow, itis not necessary to apply the method, because people

need a trade-off between waiting time and forminggroup, and in a sparse dataset, there is no need forgrouping, as conflicts between road users are less likely.
A possible extension of the approach is to also take intoconsideration the intermediate points of the road usersin the group forming process. In the example of Fig. 4,we can replace the ODsimilarity with the symmetricalHausdorff distance (Edwards, 1975) calculated fromintermediate points of pairwise trajectories. In this way,dedicated, separate paths between the same origin anddestination could be realized and thus adapt better to theplans of the users.

Figure 4: Benefit from Hausdorff distance (sperate theusers who have similar OD but different waypoints)
One drawback of the method is that it cannot deal withthe splitting and merging of groups. Recall the lightblue and orange groups coming from the top directionin Fig. 2, which started from the same lane but separatedafter passing through the roundabout. This wouldinvolve to cluster also partial trajectories and is subjectto future work.

5. Conclusion and future work
In this paper, we proposed a dynamic facility locationmethod to cluster road users who have similar OD andentering time in a shared space. In future work, we willadopt this method for all kinds of road users byintegrating average velocities to the distance metric andinclude trajectories to deal with the splitting andmerging cases. Furthermore, we will investigate howadditional constraints and requirements could beintegrated into the approach, to be able to apply it for atraffic organization of a junction or a shared space.Among others, this relates to identifying persistentclusters over time or with a certain spatio-temporalpattern, which would lead to an adaptation of the
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identification of coarse clusters. Furthermore, the groupformation has to be integrated into the traffic planningof the whole junction. Another investigation will dealwith the aspect of partial clustering to allow groups tosplit and merge in order to maximize the benefits ofgroups.
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