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Abstract. We present a system for running 

experiments and user studies that can be effortlessly 

distributed across multiple heterogeneous devices. By 

taking into account specific requirements of the 

geosciences (geovisualization, cartography, location-

based services), and by providing a clear and simple 

conceptual model for defining experiments, this system 

can help researchers implement empirical studies in 

less time or with increased functionality, and can lead 

to increased transparency and reproducibility of studies 

for other researchers. The versatility of the proposed 

system is demonstrated in three case studies where the 

system is put to use in widely different application 

scenarios. 
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1 Introduction and Problem Statement 

Any field in the geosciences that is concerned with 

researching something that is intended for use by users 

may eventually need to verify the applicability of its 

findings by conducting user studies in the form of 

practical experiments. In particular in the fields of 

cartography, geovisualization and location-based 

services (LBS), running such studies has a long 

tradition and has contributed to an improved 

understanding of how humans interact with spatial 

phenomena and their mediated representations. For the 

field of LBS, Huang et al. (2018) have recently argued 

that applications are becoming more complex and 

heterogeneous, and finding a framework for evaluating 

such usage scenarios is identified as a major research 

challenge. 

Recently, the issues of reproducibility and repeatability 

have gained some attention in the research community 

(Nüst et al., 2019; Kosara and Haroz, 2018; Barba, 

2018), partly as a consequence of the so-called 

replication crisis, referring to the fact that in some 

fields researchers have failed to replicate the results of 

well-known prior studies. One challenge that 

researchers who attempt to reproduce a study face is 

that it may be hard to distil the exact details about an 

experiment – input parameters, internal calculations, 

setup of distributed computing environments etc. – 

from the text describing the experiment, even if at first 

glance the description seems complete. The effort to 

analyse and re-implement experiments is a serious 

obstacle to reproducing research, particularly if it 

involves complex setups distributed across devices.  

In the geosciences this problem is aggravated by the 

fact that conducting psychological experiments may 

not be the main focus of the researchers involved. Not 

all graduate students in the geosciences are naturally 

born software engineers who can program custom 

experiments from scratch, nor will readily available 

solutions always fulfil the specific requirements they 

may have. We believe that many researchers and 

projects in the geosciences would benefit from an 

improved and simplified way to design, develop and 

replicate experiments, informed by the requirements of 

their field of research. 

1.1 Related Work and Current Practices 

To our knowledge, the techniques and technologies 

employed for implementing experiments in the 

geosciences are heterogeneous, without clear standards 

or best practices. While for this early-stage report there 

was neither time nor space for a formal, exhaustive 

survey of the practices of the community, our own 

experience and informal exchange with other 

researchers has contributed to our understanding of 

current practices. 

Strategies to implement empirical studies can be 

categorized along a continuum of the amount of control 

over the exact details of an experiment. Out-of-the-box 

solutions lie at one end of this continuum, and fully 

proprietary custom software, programmed by the 

researcher or under her direction, at the other end. 
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Towards the “ready-made” end of the continuum lie 

online survey system (such as LimeSurvey, SurveyLab, 

SurveyMonkey or even Google Forms), which are a 

popular way to gather participant responses, and are 

widely used both in lab settings and in online 

scenarios. These products offer interactive editing of 

surveys, which can be modified and customized for a 

wide range of purposes. All but the simplest of such 

tools offer ways to extend and customize the 

appearance of the user interface (UI) and presented 

information by uploading images or adding CSS and 

JavaScript to a predefined layout to alter its appearance 

and behaviour. Realizing fully interactive experiments 

or precisely controlling stimulus presentation in lab 

settings with such tools can be a difficult undertaking, 

and coordinated use across multiple devices or an 

experiment structure outside the “survey” metaphor is 

usually not possible. 

For controlled stimulus presentation and participant 

feedback in lab settings, several tools exist that have 

been developed mainly in the experimental psychology 

community. These include commercial products such 

as E-Prime or EventIDE, and open source projects such 

as PsychoPy or Psychtoolbox. None of the tools we 

evaluated from this category supported interacting with 

geographic media (maps, geodata), mobile use or 

location-based interaction out of the box, and the 

paradigms at use are not necessarily tailored towards 

the needs of our community. 

At the other end of the continuum sketched above are 

prototypes programmed by researchers for the purpose 

of a single specific experiment or a series of 

experiments. While this approach offers ultimate 

flexibility, it can be a tedious process to realize non-

trivial experiments in this way. For some scenarios like 

distributed setups, multiple simultaneous users or non-

standard user interaction, the researcher may face 

complex programming challenges. Consequently, when 

this approach is used, prototypes are often 

implemented with the minimum required functionality 

to run the experiment and extract the data. 

Such a “bespoke prototype” scenario may offer the 

greatest flexibility and also allow for reproduction of 

the results by others, if the code is published open 

source. However, the source code of an experiment 

alone is often not sufficient for reproducibility – much 

may depend on the setup and configuration of software 

and hardware, which may not be part of the source 

code but distributed across various files or even 

devices. Containerization has in recent years gained 

popularity in research communities as a way to 

distribute not only isolated programming projects, but 

the complete configuration of a system. While indeed 

containerization can aid reproducibility further (Nüst 

and Pebesma, 2020), distributing the description of the 

complete computing environment for an experiment 

may obscure relevant details from less relevant system 

configuration and “boilerplate” code to set up the 

system. For mobile and distributed setups the 

possibility for containerization may currently also be 

limited. 

In this paper, we report on our attempt to implement a 

system for designing and running experiments that 

takes into account some specific needs of the 

geoscientific community, allows for full flexibility and 

complex, distributed setups, while providing 

researchers with reusable building blocks and a runtime 

that removes unnecessary complexity from the 

development and prototyping process. We hope that by 

providing a programming model that affords a clear 

structure of an experiment’s code in alignment with a 

conceptual model of the experiment’s structure and 

dynamic behaviour, the proposed system may improve 

reproducibility, not just by allowing others to run the 

code, but by facilitating a better understanding and the 

possibility to not only reproduce, but extend and 

improve previous works in the spirit of open science.  

2 Requirements and System Design 

Based on the limitations of the various approaches to 

experiment implementation discussed in the previous 

section, we identified the following initial requirements 

for designing an experimentation framework: 

 A conceptual model tailored towards behavioural 

experiments and user studies 

 A centralized experiment specification that defines 

the behaviour of all (distributed) components, to aid 

peer review and reproducibility 

 Distribution across heterogeneous devices should 

be effortless and defined at the experiment level 

(not in separate configuration files, subprojects or 

the devices themselves) 

 Support of multiple configuration scenarios to aid 

development, simulation runs and different 

experiment configurations 

 Simple composition of experiments from existing 

components, and simple extensibility, to allow for 

use in teaching and student’s research 

 Cater to specific requirements of research in 

cartography, geovisualization and LBS 
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Those requirements for research in the geosciences 

have been broken down further into the following 

aspects: 

 Maps and location tracking should be readily 

available as components for experiments, with 

options to adapt those for specific needs 

 Support for mobile devices and distributed setups 

for LBS experiments 

 Specification of dimensions for on-screen rendering 

in real-world metric units, regardless of display 

resolution and size, for accurate reproduction of 

maps and stimuli used in cartography and 

geovisualization experiments 

 Support for heterogeneous devices and platforms, 

as common in our domain, while still providing a 

concise definition of overall behaviour 

2.1 Design Considerations and Implementation 

Full flexibility for experiment design is only possible 

by specifying the experiment and tasks in a Turing-

complete programming language (Bostock and Davies, 

2013). However, due to the requirements of 

reproducibility and suitability for non-expert 

programmers, it is desirable to design an API that 

minimizes “boilerplate” code1, complex data structures 

and object hierarchies, and allows users to express the 

relevant ideas concisely. A good programming 

framework keeps the user in a state of “selective 

cluelessness” (Ledermann and Gartner, 2015; Tulach, 

2008) that hides away complexity that the user does not 

want to be concerned with (e.g. how exactly the code is 

distributed to the various devices of the overall setup), 

and highlights the relevant aspects of the design (e.g. 

how interaction with one component affects the overall 

state of the experiment). 

Modern web browsers offer a versatile cross-platform 

runtime environment for interactive applications, 

providing a wide range of output modalities ranging 

from classic web pages to interactive graphics and even 

virtual/augmented reality displays (Karhu et al., 2014). 

JavaScript can be run in the browser or on a server 

through Node.js. It was therefore decided that the 

experiment framework should be implemented in 

JavaScript for both the server coordinating the 

experiment and the clients rendering its UI to 

participants. 

                                                           
1  The program code needed to initialize and bootstrap a 

system before defining the actual desired specific behaviour. 

(https://en.wikipedia.org/wiki/Boilerplate_code) 

Above considerations have been implemented in our 

prototype for a browser-based, distributed experiment 

framework, stimsrv. Upon start, the stimsrv executable 

reads an experiment description file written in 

JavaScript, launches a webserver, packages the 

experiment description together with all required 

libraries for the browser, and runs a central controller 

instance that coordinates the experiment. Client devices 

connect to the stimsrv server via a web browser, which 

shows the visual part of the experiment. (Other types of 

clients, such as custom hardware interfaces or 

specialized software, can also connect to the server 

through the WebSockets protocol). For mobile devices 

not equipped with a full modern web browser, such as 

older mobile phones, e-book readers or smartwatches, 

the experiment display can be rendered on the server 

using puppeteer 2  (a “headless” version of the 

Chromium browser, allowing the rendering of web 

applications without showing them on screen), and sent 

to the client as a series of images. This allows a wide 

range of devices to be incorporated in the experiments. 

2.2 Terminology and Conceptual Model 

The basic terminology used for creating experiments in 

stimsrv is based on the textbook on experiment design 

by Cunningham and Wallraven (2011) (concepts 

reflected in the stimsrv programming model are set in 

italics in the following paragraphs). The term 

experiment is used to denote all aspects contributing to 

a full experiment run, including participating devices, 

tasks to be run and data storage. An experiment 

typically runs a sequence of tasks, which usually 

present some kind of stimulus through a user interface 

to the participants and process some kind of response, 

potentially repeatedly in multiple trials.  

On top of these fundamental building blocks, we 

introduce several concepts for managing and 

distributing the experiment’s state and behaviour. A 

task’s context represents the current circumstances 

under which it is run. The context may be modified 

only between tasks, and may contain parameters 

specific to each client device. For each trial of a task, a 

condition object specifies the parameters of the trial 

(i.e. the parameters of the stimulus, and the choice of 

possible responses). At the end of each trial, a response 

is yielded, which determines the next condition, and a 

result is generated, which may be stored as part of the 

overall experiment results. 

                                                           
2 https://pptr.dev/ 
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2.3 Formalizing Experiment State 

One topic that has motivated development in web 

technologies in recent years is the insight that 

managing the overall state of a program, particularly 

when distributed among multiple components, is a 

complex undertaking and a common source of hard-to-

find errors (Madsen et al., 2020). This has inspired the 

development of technologies like React.js, which allow 

application state to be modelled as an immutable 

singleton (an object that exists only once in the overall 

system and cannot be changed in an uncontrolled 

fashion), and recreate the complete application upon 

each state change. In the hope to aid novice and expert 

programmers alike to create consistent, bug-free 

experiments, the goal was to use a similar paradigm of 

centrally controlled, immutable state in our system. 

Tasks in stimsrv generally cannot store internal state 

between runs, and can update the overall state (context 

and condition) only by sending responses to the server, 

which in turn broadcasts the new state to all devices – 

this removes many sources of complexity and errors, 

particularly in distributed scenarios. This also allows 

clients to (re)join while an experiment is already 

running, as they can immediately be updated to the 

current state of the experiment by simply receiving the 

active context and condition objects from the server. 

This model also affords the explicit specification of 

changes of the context (between tasks) or conditions 

(between trials of the same task) at the experiment 

definition level, therefore aiding experiment authors to 

keep an overview of how the different “moving parts” 

of the experiment interact. Modern JavaScript 

constructs like arrow functions and generators allow 

for a concise definition of such dynamic behaviour (see 

Fig. 1 for example code). 

 

Figure 1: Example of a complete simple experiment 

specification. This experiment will show an identical 

random sequence of images on each participating client 

device, but loaded from a different subfolder for each 

client. 

In addition to the explicit, functional model of state 

changes, a mechanism for distributing real-time events 

to all clients is provided that may be used for 

synchronizing volatile internal state during a single 

trial in a distributed setup. This mechanism can be 

used, for example, to synchronize map panning or 

location updates of tracked participants in quasi real 

time. 

2.4 Setup Description 

The devices participating in the experiment are 

described in the experiment specification as plain 

JavaScript objects, listing properties specific to each 

device such as screen resolution or available interaction 

methods. Such properties will become part of the 

context of each task on the device. Devices are 

assigned to roles in the experiment, specifying which 

user interface elements are available to them. This 

allows for devices to fulfil various roles in the overall 

experiment, such as displaying stimuli, collecting 

responses or displaying status information for the 

experimenter, or any combination thereof. 

 

Figure 2: Example setup description, specifying devices 

and their properties (such as screen resolution) and the 

roles they may have in the experiment. 

3 Three Case Studies Implemented With 

stimsrv 

To explore the versatility of the proposed system, we 

implemented three initial case studies that demonstrate 

a wide range of application scenarios ranging from 

cartography to LBS (see Fig. 3). Two of these case 

studies replicate previous studies conducted at our 

group by graduate students – this way, the effort and 

complexity of implementing the experiment with the 

stimsrv prototype could be compared directly to the 

original version. 
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Figure 3: Three case studies implemented using stimsrv. 

Top: Map use study, asking participants to find places on 

a map using different interaction techniques. Middle: 

Map perception study, comparing map rendering on 

different mobile phone screens. Bottom: Location-based-

services study, employing the “Wizard of Oz” prototyping 

methodology to compare indoor navigation instructions. 

The first case study is a prototypical map use 

experiment, intended to compare the behaviour of 

participants when using different interaction modalities 

for zooming and panning on an online map (Huang, 

2017). The participant is presented with a series of 

place names, which she is asked to find on the map by 

zooming and panning. After the completion of 5 trials, 

the participant is asked to change interaction modality, 

and complete another 5 trials. All interactions 

(zooming and panning gestures) are logged for later 

analysis. 

The original experiment was implemented in 

JavaScript, using only the Leaflet library for creating 

the interactive web map. The code of the original 

implementation consisted of 386 effective lines of 

JavaScript code (without blank lines or comments), 24 

lines of HTML, 114 lines of CSS and 110 lines of 

configuration specifying the place names and locations. 

The replicated experiment has been implemented for 

stimsrv with 96 lines of JavaScript, 4 lines of HTML, 

28 lines of CSS and 102 lines of configuration3, while 

extending the functionality of the experiment to include 

a supervisor screen on a second computer. Further 

analysis of the semantics of the JavaScript code shows 

that the original experiment code used 42 functions, 10 

loops and 25 if/else statements, which were reduced to 

only 10 functions and 4 if statements in the stimsrv-

based version. The replicated experiment has been 

implemented by a seasoned programmer in 3 hours. 

While neither the number of lines nor the time needed 

for implementation is a good direct indicator for code 

complexity (the time needed to learn a new framework 

like stimsrv needs to be taken into account, too), the 

reduction to roughly one quarter of the original amount 

of code demonstrates how implementations can make 

use of the implicit functionality provided by stimsrv, 

and focus on the parts truly specific to the experiment, 

while at the same time gaining additional functionality 

like a supervisor screen “for free”.  

The second case study is an experiment that triggered 

the development of stimsrv due to its unique 

requirements, which could not be satisfied with any 

other experiment framework we evaluated. In this map 

perception study, map symbology is rendered on the 

screens of mobile phones of varying resolutions, and 

the limits of legibility are tested by presenting 

increasingly smaller stimuli using a staircase method 

(Cornsweet, 1962). The mobile phones are mounted 

behind bezels revealing only a small area of identical 

size of each screen – therefore, participant feedback 

cannot be entered on the screen on which the stimulus 

is presented, but needs to be entered on a separate 

device provided for this purpose. This experiment 

design requires a multitude of devices contributing to 

the experiment in a coordinated fashion. The 

implementation can nevertheless focus on the 

functionality specific to the experiment – rendering the 

various cartographic stimuli – while the stimsrv 

runtime takes care of coordinating devices, stimuli and 

responses, and logging the results. 

The third case study is a replication of another 

experiment of a graduate student, as a continuation of 

                                                           
3 stimsrv “configuration” is technically also JavaScript code – the 

distinction here is made between declarative-style configuration code 
of little complexity, and code defining dynamic behaviour. 
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earlier research in indoor wayfinding (Wang et al., 

2017), inspired by Bakogiannis et al. (2019). In an LBS 

indoor navigation scenario, a “Wizard of Oz” 

prototyping strategy (Kelley, 1984) is employed by 

showing the user a hypothetical indoor navigation user 

interface, which is in fact a mock-up controlled by the 

experimenter, who is walking a few steps behind the 

participant. The original experiment used a native app 

and screensharing via TeamViewer, which severely 

limited the design and interaction possibilities. In the 

re-implementation, the experimenter can remote 

control the UI on the participant’s phone, while not 

being forced to use a UI identical to that phone. The 

replicated experiment has been implemented with 107 

lines of configuration and only 9 effective lines of 

JavaScript code (as such “Wizard of Oz” prototyping is 

facilitated as a standard application scenario). 

4 Outlook and Future Work 

The vision of stimsrv is to allow all aspects of an 

experiment to be defined in a single, well-structured 

code repository. Simple experiments may be defined in 

a single file, complex projects may split the experiment 

definition into multiple files such as individual task 

implementations. Still, we believe that even in those 

cases the structure and concepts provided by stimsrv 

may contribute to more transparency and better 

reproducibility and extensibility of experiments in the 

geosciences and beyond. However, thorough 

verification of such claims still needs to be provided. 

The stimsrv server packages all code of an experiment, 

plus all libraries it uses, into a single JavaScript 

“bundle” for use by its clients. Such a bundle is a 

permanent, dependency-free, complete definition of the 

experiment. When archived together with its runtimes 

(i.e. as a container including the browser and Node.js 

executables), this would form a durable, complete 

archive of the experiment. 

In scenarios where it is desirable to prove that specific 

results originate from a specific experiment design, a 

cryptographic hash of the experiment bundle could be 

calculated, and deposited together with pre-registration 

of hypotheses (Nosek et al., 2018), before the 

experiment is actually run. Results data could then be 

cryptographically signed with the experiment hash, to 

prevent tampering and ensure that the data indeed 

originates from a specific experiment configuration. 

More on the user side, there is the idea to make use of 

the notebook paradigm (Nüst and Pebesma, 2020) for 

experiment specification. Observable4 is a platform for 

JavaScript notebooks, and we plan to evaluate whether 

such notebooks can be used to specify and simulate 

experiments in an interactive, visual environment and 

to supply them to the stimsrv runtime for distributed 

execution for the actual experiment run. 

In the immediate future, we are planning to put stimsrv 

to use in teaching in our LBS lab, and encourage 

graduate students to use it for their thesis work. In this 

process, we want to evaluate the advantages and 

difficulties of the system more thoroughly.  

4.1 Software and Data Availability 

stimsrv is available as open source software at 

https://github.com/floledermann/stimsrv. The code for 

case studies #1 and #3 is also available56. Case study 

#2 is still under active development, and will be made 

available once the experiment has been run and 

published. Further examples for stimsrv can be found 

at: https://github.com/floledermann/stimsrv-examples. 
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