
Towards Conducting Reproducible Distributed Experiments in

the Geosciences

Florian Ledermann and Georg Gartner

florian.ledermann@tuwien.ac.at

Research Division Cartography, Department for Geodesy and Geoinformation, TU Wien, Austria

Abstract. We present a system for running

experiments and user studies that can be effortlessly

distributed across multiple heterogeneous devices. By

taking into account specific requirements of the

geosciences (geovisualization, cartography, location-

based services), and by providing a clear and simple

conceptual model for defining experiments, this system

can help researchers implement empirical studies in

less time or with increased functionality, and can lead

to increased transparency and reproducibility of studies

for other researchers. The versatility of the proposed

system is demonstrated in three case studies where the

system is put to use in widely different application

scenarios.

Keywords: user studies, map use, location-based

services, empirical research, reproducible research

1 Introduction and Problem Statement

Any field in the geosciences that is concerned with

researching something that is intended for use by users

may eventually need to verify the applicability of its

findings by conducting user studies in the form of

practical experiments. In particular in the fields of

cartography, geovisualization and location-based

services (LBS), running such studies has a long

tradition and has contributed to an improved

understanding of how humans interact with spatial

phenomena and their mediated representations. For the

field of LBS, Huang et al. (2018) have recently argued

that applications are becoming more complex and

heterogeneous, and finding a framework for evaluating

such usage scenarios is identified as a major research

challenge.

Recently, the issues of reproducibility and repeatability

have gained some attention in the research community

(Nüst et al., 2019; Kosara and Haroz, 2018; Barba,

2018), partly as a consequence of the so-called

replication crisis, referring to the fact that in some

fields researchers have failed to replicate the results of

well-known prior studies. One challenge that

researchers who attempt to reproduce a study face is

that it may be hard to distil the exact details about an

experiment – input parameters, internal calculations,

setup of distributed computing environments etc. –

from the text describing the experiment, even if at first

glance the description seems complete. The effort to

analyse and re-implement experiments is a serious

obstacle to reproducing research, particularly if it

involves complex setups distributed across devices.

In the geosciences this problem is aggravated by the

fact that conducting psychological experiments may

not be the main focus of the researchers involved. Not

all graduate students in the geosciences are naturally

born software engineers who can program custom

experiments from scratch, nor will readily available

solutions always fulfil the specific requirements they

may have. We believe that many researchers and

projects in the geosciences would benefit from an

improved and simplified way to design, develop and

replicate experiments, informed by the requirements of

their field of research.

1.1 Related Work and Current Practices

To our knowledge, the techniques and technologies

employed for implementing experiments in the

geosciences are heterogeneous, without clear standards

or best practices. While for this early-stage report there

was neither time nor space for a formal, exhaustive

survey of the practices of the community, our own

experience and informal exchange with other

researchers has contributed to our understanding of

current practices.

Strategies to implement empirical studies can be

categorized along a continuum of the amount of control

over the exact details of an experiment. Out-of-the-box

solutions lie at one end of this continuum, and fully

proprietary custom software, programmed by the

researcher or under her direction, at the other end.

AGILE: GIScience Series, 2, 33, 2021. https://doi.org/10.5194/agile-giss-2-33-2021
Proceedings of the 24th AGILE Conference on Geographic Information Science, 2021.
Editors: Panagiotis Partsinevelos, Phaedon Kyriakidis, and Marinos Kavouras.
This contribution underwent peer review based on a full paper submission.
© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

1 of 7

mailto:florian.ledermann@tuwien.ac.at

Towards the “ready-made” end of the continuum lie

online survey system (such as LimeSurvey, SurveyLab,

SurveyMonkey or even Google Forms), which are a

popular way to gather participant responses, and are

widely used both in lab settings and in online

scenarios. These products offer interactive editing of

surveys, which can be modified and customized for a

wide range of purposes. All but the simplest of such

tools offer ways to extend and customize the

appearance of the user interface (UI) and presented

information by uploading images or adding CSS and

JavaScript to a predefined layout to alter its appearance

and behaviour. Realizing fully interactive experiments

or precisely controlling stimulus presentation in lab

settings with such tools can be a difficult undertaking,

and coordinated use across multiple devices or an

experiment structure outside the “survey” metaphor is

usually not possible.

For controlled stimulus presentation and participant

feedback in lab settings, several tools exist that have

been developed mainly in the experimental psychology

community. These include commercial products such

as E-Prime or EventIDE, and open source projects such

as PsychoPy or Psychtoolbox. None of the tools we

evaluated from this category supported interacting with

geographic media (maps, geodata), mobile use or

location-based interaction out of the box, and the

paradigms at use are not necessarily tailored towards

the needs of our community.

At the other end of the continuum sketched above are

prototypes programmed by researchers for the purpose

of a single specific experiment or a series of

experiments. While this approach offers ultimate

flexibility, it can be a tedious process to realize non-

trivial experiments in this way. For some scenarios like

distributed setups, multiple simultaneous users or non-

standard user interaction, the researcher may face

complex programming challenges. Consequently, when

this approach is used, prototypes are often

implemented with the minimum required functionality

to run the experiment and extract the data.

Such a “bespoke prototype” scenario may offer the

greatest flexibility and also allow for reproduction of

the results by others, if the code is published open

source. However, the source code of an experiment

alone is often not sufficient for reproducibility – much

may depend on the setup and configuration of software

and hardware, which may not be part of the source

code but distributed across various files or even

devices. Containerization has in recent years gained

popularity in research communities as a way to

distribute not only isolated programming projects, but

the complete configuration of a system. While indeed

containerization can aid reproducibility further (Nüst

and Pebesma, 2020), distributing the description of the

complete computing environment for an experiment

may obscure relevant details from less relevant system

configuration and “boilerplate” code to set up the

system. For mobile and distributed setups the

possibility for containerization may currently also be

limited.

In this paper, we report on our attempt to implement a

system for designing and running experiments that

takes into account some specific needs of the

geoscientific community, allows for full flexibility and

complex, distributed setups, while providing

researchers with reusable building blocks and a runtime

that removes unnecessary complexity from the

development and prototyping process. We hope that by

providing a programming model that affords a clear

structure of an experiment’s code in alignment with a

conceptual model of the experiment’s structure and

dynamic behaviour, the proposed system may improve

reproducibility, not just by allowing others to run the

code, but by facilitating a better understanding and the

possibility to not only reproduce, but extend and

improve previous works in the spirit of open science.

2 Requirements and System Design

Based on the limitations of the various approaches to

experiment implementation discussed in the previous

section, we identified the following initial requirements

for designing an experimentation framework:

 A conceptual model tailored towards behavioural

experiments and user studies

 A centralized experiment specification that defines

the behaviour of all (distributed) components, to aid

peer review and reproducibility

 Distribution across heterogeneous devices should

be effortless and defined at the experiment level

(not in separate configuration files, subprojects or

the devices themselves)

 Support of multiple configuration scenarios to aid

development, simulation runs and different

experiment configurations

 Simple composition of experiments from existing

components, and simple extensibility, to allow for

use in teaching and student’s research

 Cater to specific requirements of research in

cartography, geovisualization and LBS

AGILE: GIScience Series, 2, 33, 2021 | https://doi.org/10.5194/agile-giss-2-33-2021 2 of 7

Those requirements for research in the geosciences

have been broken down further into the following

aspects:

 Maps and location tracking should be readily

available as components for experiments, with

options to adapt those for specific needs

 Support for mobile devices and distributed setups

for LBS experiments

 Specification of dimensions for on-screen rendering

in real-world metric units, regardless of display

resolution and size, for accurate reproduction of

maps and stimuli used in cartography and

geovisualization experiments

 Support for heterogeneous devices and platforms,

as common in our domain, while still providing a

concise definition of overall behaviour

2.1 Design Considerations and Implementation

Full flexibility for experiment design is only possible

by specifying the experiment and tasks in a Turing-

complete programming language (Bostock and Davies,

2013). However, due to the requirements of

reproducibility and suitability for non-expert

programmers, it is desirable to design an API that

minimizes “boilerplate” code1, complex data structures

and object hierarchies, and allows users to express the

relevant ideas concisely. A good programming

framework keeps the user in a state of “selective

cluelessness” (Ledermann and Gartner, 2015; Tulach,

2008) that hides away complexity that the user does not

want to be concerned with (e.g. how exactly the code is

distributed to the various devices of the overall setup),

and highlights the relevant aspects of the design (e.g.

how interaction with one component affects the overall

state of the experiment).

Modern web browsers offer a versatile cross-platform

runtime environment for interactive applications,

providing a wide range of output modalities ranging

from classic web pages to interactive graphics and even

virtual/augmented reality displays (Karhu et al., 2014).

JavaScript can be run in the browser or on a server

through Node.js. It was therefore decided that the

experiment framework should be implemented in

JavaScript for both the server coordinating the

experiment and the clients rendering its UI to

participants.

1 The program code needed to initialize and bootstrap a

system before defining the actual desired specific behaviour.

(https://en.wikipedia.org/wiki/Boilerplate_code)

Above considerations have been implemented in our

prototype for a browser-based, distributed experiment

framework, stimsrv. Upon start, the stimsrv executable

reads an experiment description file written in

JavaScript, launches a webserver, packages the

experiment description together with all required

libraries for the browser, and runs a central controller

instance that coordinates the experiment. Client devices

connect to the stimsrv server via a web browser, which

shows the visual part of the experiment. (Other types of

clients, such as custom hardware interfaces or

specialized software, can also connect to the server

through the WebSockets protocol). For mobile devices

not equipped with a full modern web browser, such as

older mobile phones, e-book readers or smartwatches,

the experiment display can be rendered on the server

using puppeteer 2 (a “headless” version of the

Chromium browser, allowing the rendering of web

applications without showing them on screen), and sent

to the client as a series of images. This allows a wide

range of devices to be incorporated in the experiments.

2.2 Terminology and Conceptual Model

The basic terminology used for creating experiments in

stimsrv is based on the textbook on experiment design

by Cunningham and Wallraven (2011) (concepts

reflected in the stimsrv programming model are set in

italics in the following paragraphs). The term

experiment is used to denote all aspects contributing to

a full experiment run, including participating devices,

tasks to be run and data storage. An experiment

typically runs a sequence of tasks, which usually

present some kind of stimulus through a user interface

to the participants and process some kind of response,

potentially repeatedly in multiple trials.

On top of these fundamental building blocks, we

introduce several concepts for managing and

distributing the experiment’s state and behaviour. A

task’s context represents the current circumstances

under which it is run. The context may be modified

only between tasks, and may contain parameters

specific to each client device. For each trial of a task, a

condition object specifies the parameters of the trial

(i.e. the parameters of the stimulus, and the choice of

possible responses). At the end of each trial, a response

is yielded, which determines the next condition, and a

result is generated, which may be stored as part of the

overall experiment results.

2 https://pptr.dev/

AGILE: GIScience Series, 2, 33, 2021 | https://doi.org/10.5194/agile-giss-2-33-2021 3 of 7

2.3 Formalizing Experiment State

One topic that has motivated development in web

technologies in recent years is the insight that

managing the overall state of a program, particularly

when distributed among multiple components, is a

complex undertaking and a common source of hard-to-

find errors (Madsen et al., 2020). This has inspired the

development of technologies like React.js, which allow

application state to be modelled as an immutable

singleton (an object that exists only once in the overall

system and cannot be changed in an uncontrolled

fashion), and recreate the complete application upon

each state change. In the hope to aid novice and expert

programmers alike to create consistent, bug-free

experiments, the goal was to use a similar paradigm of

centrally controlled, immutable state in our system.

Tasks in stimsrv generally cannot store internal state

between runs, and can update the overall state (context

and condition) only by sending responses to the server,

which in turn broadcasts the new state to all devices –

this removes many sources of complexity and errors,

particularly in distributed scenarios. This also allows

clients to (re)join while an experiment is already

running, as they can immediately be updated to the

current state of the experiment by simply receiving the

active context and condition objects from the server.

This model also affords the explicit specification of

changes of the context (between tasks) or conditions

(between trials of the same task) at the experiment

definition level, therefore aiding experiment authors to

keep an overview of how the different “moving parts”

of the experiment interact. Modern JavaScript

constructs like arrow functions and generators allow

for a concise definition of such dynamic behaviour (see

Fig. 1 for example code).

Figure 1: Example of a complete simple experiment

specification. This experiment will show an identical

random sequence of images on each participating client

device, but loaded from a different subfolder for each

client.

In addition to the explicit, functional model of state

changes, a mechanism for distributing real-time events

to all clients is provided that may be used for

synchronizing volatile internal state during a single

trial in a distributed setup. This mechanism can be

used, for example, to synchronize map panning or

location updates of tracked participants in quasi real

time.

2.4 Setup Description

The devices participating in the experiment are

described in the experiment specification as plain

JavaScript objects, listing properties specific to each

device such as screen resolution or available interaction

methods. Such properties will become part of the

context of each task on the device. Devices are

assigned to roles in the experiment, specifying which

user interface elements are available to them. This

allows for devices to fulfil various roles in the overall

experiment, such as displaying stimuli, collecting

responses or displaying status information for the

experimenter, or any combination thereof.

Figure 2: Example setup description, specifying devices

and their properties (such as screen resolution) and the

roles they may have in the experiment.

3 Three Case Studies Implemented With

stimsrv

To explore the versatility of the proposed system, we

implemented three initial case studies that demonstrate

a wide range of application scenarios ranging from

cartography to LBS (see Fig. 3). Two of these case

studies replicate previous studies conducted at our

group by graduate students – this way, the effort and

complexity of implementing the experiment with the

stimsrv prototype could be compared directly to the

original version.

AGILE: GIScience Series, 2, 33, 2021 | https://doi.org/10.5194/agile-giss-2-33-2021 4 of 7

Figure 3: Three case studies implemented using stimsrv.

Top: Map use study, asking participants to find places on

a map using different interaction techniques. Middle:

Map perception study, comparing map rendering on

different mobile phone screens. Bottom: Location-based-

services study, employing the “Wizard of Oz” prototyping

methodology to compare indoor navigation instructions.

The first case study is a prototypical map use

experiment, intended to compare the behaviour of

participants when using different interaction modalities

for zooming and panning on an online map (Huang,

2017). The participant is presented with a series of

place names, which she is asked to find on the map by

zooming and panning. After the completion of 5 trials,

the participant is asked to change interaction modality,

and complete another 5 trials. All interactions

(zooming and panning gestures) are logged for later

analysis.

The original experiment was implemented in

JavaScript, using only the Leaflet library for creating

the interactive web map. The code of the original

implementation consisted of 386 effective lines of

JavaScript code (without blank lines or comments), 24

lines of HTML, 114 lines of CSS and 110 lines of

configuration specifying the place names and locations.

The replicated experiment has been implemented for

stimsrv with 96 lines of JavaScript, 4 lines of HTML,

28 lines of CSS and 102 lines of configuration3, while

extending the functionality of the experiment to include

a supervisor screen on a second computer. Further

analysis of the semantics of the JavaScript code shows

that the original experiment code used 42 functions, 10

loops and 25 if/else statements, which were reduced to

only 10 functions and 4 if statements in the stimsrv-

based version. The replicated experiment has been

implemented by a seasoned programmer in 3 hours.

While neither the number of lines nor the time needed

for implementation is a good direct indicator for code

complexity (the time needed to learn a new framework

like stimsrv needs to be taken into account, too), the

reduction to roughly one quarter of the original amount

of code demonstrates how implementations can make

use of the implicit functionality provided by stimsrv,

and focus on the parts truly specific to the experiment,

while at the same time gaining additional functionality

like a supervisor screen “for free”.

The second case study is an experiment that triggered

the development of stimsrv due to its unique

requirements, which could not be satisfied with any

other experiment framework we evaluated. In this map

perception study, map symbology is rendered on the

screens of mobile phones of varying resolutions, and

the limits of legibility are tested by presenting

increasingly smaller stimuli using a staircase method

(Cornsweet, 1962). The mobile phones are mounted

behind bezels revealing only a small area of identical

size of each screen – therefore, participant feedback

cannot be entered on the screen on which the stimulus

is presented, but needs to be entered on a separate

device provided for this purpose. This experiment

design requires a multitude of devices contributing to

the experiment in a coordinated fashion. The

implementation can nevertheless focus on the

functionality specific to the experiment – rendering the

various cartographic stimuli – while the stimsrv

runtime takes care of coordinating devices, stimuli and

responses, and logging the results.

The third case study is a replication of another

experiment of a graduate student, as a continuation of

3 stimsrv “configuration” is technically also JavaScript code – the

distinction here is made between declarative-style configuration code
of little complexity, and code defining dynamic behaviour.

AGILE: GIScience Series, 2, 33, 2021 | https://doi.org/10.5194/agile-giss-2-33-2021 5 of 7

earlier research in indoor wayfinding (Wang et al.,

2017), inspired by Bakogiannis et al. (2019). In an LBS

indoor navigation scenario, a “Wizard of Oz”

prototyping strategy (Kelley, 1984) is employed by

showing the user a hypothetical indoor navigation user

interface, which is in fact a mock-up controlled by the

experimenter, who is walking a few steps behind the

participant. The original experiment used a native app

and screensharing via TeamViewer, which severely

limited the design and interaction possibilities. In the

re-implementation, the experimenter can remote

control the UI on the participant’s phone, while not

being forced to use a UI identical to that phone. The

replicated experiment has been implemented with 107

lines of configuration and only 9 effective lines of

JavaScript code (as such “Wizard of Oz” prototyping is

facilitated as a standard application scenario).

4 Outlook and Future Work

The vision of stimsrv is to allow all aspects of an

experiment to be defined in a single, well-structured

code repository. Simple experiments may be defined in

a single file, complex projects may split the experiment

definition into multiple files such as individual task

implementations. Still, we believe that even in those

cases the structure and concepts provided by stimsrv

may contribute to more transparency and better

reproducibility and extensibility of experiments in the

geosciences and beyond. However, thorough

verification of such claims still needs to be provided.

The stimsrv server packages all code of an experiment,

plus all libraries it uses, into a single JavaScript

“bundle” for use by its clients. Such a bundle is a

permanent, dependency-free, complete definition of the

experiment. When archived together with its runtimes

(i.e. as a container including the browser and Node.js

executables), this would form a durable, complete

archive of the experiment.

In scenarios where it is desirable to prove that specific

results originate from a specific experiment design, a

cryptographic hash of the experiment bundle could be

calculated, and deposited together with pre-registration

of hypotheses (Nosek et al., 2018), before the

experiment is actually run. Results data could then be

cryptographically signed with the experiment hash, to

prevent tampering and ensure that the data indeed

originates from a specific experiment configuration.

More on the user side, there is the idea to make use of

the notebook paradigm (Nüst and Pebesma, 2020) for

experiment specification. Observable4 is a platform for

JavaScript notebooks, and we plan to evaluate whether

such notebooks can be used to specify and simulate

experiments in an interactive, visual environment and

to supply them to the stimsrv runtime for distributed

execution for the actual experiment run.

In the immediate future, we are planning to put stimsrv

to use in teaching in our LBS lab, and encourage

graduate students to use it for their thesis work. In this

process, we want to evaluate the advantages and

difficulties of the system more thoroughly.

4.1 Software and Data Availability

stimsrv is available as open source software at

https://github.com/floledermann/stimsrv. The code for

case studies #1 and #3 is also available56. Case study

#2 is still under active development, and will be made

available once the experiment has been run and

published. Further examples for stimsrv can be found

at: https://github.com/floledermann/stimsrv-examples.

Acknowledgements and Author

Contributions

This research was conducted using regular research

funding by TU Wien. The authors thank Wangshu

Wang and Andrea Binn for help with preparing the

case studies and taking photographs.

Author roles according to the CRediT taxonomy:

F. Ledermann: https://orcid.org/0000-0001-7559-3531

Investigation, Conceptualization, Methodology,

Software, Writing (original draft).

G. Gartner: https://orcid.org/0000-0003-2002-5339

Supervision, Writing (review & editing).

References

Bakogiannis, N., Gkonos, C., and Hurni, L.:

Cartographic Visualization for Indoor Semantic

Wayfinding, Multimodal Technol. Interact., 3, 22,

2019.

Barba, L. A.: Terminologies for Reproducible

Research, arXiv:1802.03311, 2018.

Bostock, M. and Davies, J.: Code as Cartography,

Cartogr. J., 50, 129–135,

4 https://observablehq.com/
5 https://github.com/floledermann/stimsrv-experiment-findonmap
6 https://github.com/floledermann/stimsrv-experiment-wayfinding

AGILE: GIScience Series, 2, 33, 2021 | https://doi.org/10.5194/agile-giss-2-33-2021 6 of 7

https://orcid.org/0000-0001-7559-3531
https://orcid.org/0000-0003-2002-5339

https://doi.org/10.1179/0008704113Z.00000000078,

2013.

Cornsweet, T. N.: The Staircase-Method in

Psychophysics, Am. J. Psychol., 75, 485–491,

https://doi.org/10.2307/1419876, 1962.

Cunningham, D. W. and Wallraven, C.: Experimental

Design: From User Studies to Psychophysics, 1st

edition., CRC Press, Boca Raton, FL, 407 pp., 2011.

Huang, H., Gartner, G., Krisp, J. M., Raubal, M., and

Weghe, N. V. de: Location based services: ongoing

evolution and research agenda, J. Locat. Based Serv.,

12, 63–93,

https://doi.org/10.1080/17489725.2018.1508763, 2018.

Huang, S.: Comparing Mouse- and Touch-based Map

Interaction for Target Search Tasks on Large Screens,

Master Thesis, TU Wien, Vienna, Austria, 62 pp.,

2017.

Karhu, A., Heikkinen, A., and Koskela, T.: Towards

Augmented Reality Applications in a Mobile Web

Context, Eighth International Conference on Next

Generation Mobile Apps, Services and Technologies,

Oxford, UK, 1–6,

https://doi.org/10.1109/NGMAST.2014.36, 2014.

Kelley, J. F.: An iterative design methodology for user-

friendly natural language office information

applications, ACM Trans. Inf. Syst., 2, 26–41,

https://doi.org/10.1145/357417.357420, 1984.

Kosara, R. and Haroz, S.: Skipping the Replication

Crisis in Visualization: Threats to Study Validity and

How to Address Them,

https://doi.org/10.31219/osf.io/f8qey, 2018.

Ledermann, F. and Gartner, G.: mapmap.js: A Data-

Driven Web Mapping API for Thematic Cartography,

Braz. J. Cartogr., 67, 1043–1053, 2015.

Madsen, M., Lhoták, O., and Tip, F.: A Semantics for

the Essence of React, in: 34th European Conference on

Object-Oriented Programming (ECOOP 2020),

Dagstuhl, Germany, 12:1-12:26,

https://doi.org/10.4230/LIPIcs.ECOOP.2020.12, 2020.

Nosek, B. A., Ebersole, C. R., DeHaven, A. C., and

Mellor, D. T.: The preregistration revolution, Proc.

Natl. Acad. Sci., 115, 2600–2606,

https://doi.org/10.1073/pnas.1708274114, 2018.

Nüst, D. and Pebesma, E.: Practical Reproducibility in

Geography and Geosciences, Ann. Am. Assoc. Geogr.,

0, 1–11,

https://doi.org/10.1080/24694452.2020.1806028, 2020.

Nüst, D., Ostermann, F., Sileryte, R., Hofer, B.,

Granell, C., Teperek, M., Graser, A., Broman, K.,

Hettne, K., and Clare, C.: AGILE Reproducible Paper

Guidelines, https://doi.org/10.17605/OSF.IO/CB7Z8,

2019.

Tulach, J.: Practical API Design: Confessions of a Java

Framework Architect, Apress, New York, 416 pp.,

2008.

Wang, W., Huang, H., and Gartner, G.: Considering

existing indoor navigational aids in navigation services,

in: International Conference on Spatial Information

Theory, 179–189, 2017.

AGILE: GIScience Series, 2, 33, 2021 | https://doi.org/10.5194/agile-giss-2-33-2021 7 of 7

