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Abstract. State sequences are a new paradigm to 

encode and represent contextualised movement data. A 

state sequence is a temporal succession of characters 

representing categorical states of the moving entity or 

its surrounding environment. Eigen decomposition, a 

principal components analysis method, is an option to 

reduce and find patterns in such multi-dimensional 

categorical data through dimensionality reduction. 

Recurrent patterns can be found by identifying the 

most relevant eigenbehaviours, which are a set of 

vectors that characterize the variation in the behaviour 

of an entity during a time period. Dimensionality 

reduction techniques have so far not been widely used 

in movement analytics and in this paper we 

demonstrate how they could help analyse responses of 

a moving entity to the dynamic environmental 

conditions. Specifically, we use sequence-based 

representation and eigen decomposition to investigate 

movement patterns of maned wolves (Chrysocyon 

brachyurus) in relation to vegetation vigour in their 

habitat. We use a set of GPS-trajectories from a group 

of maned wolves to which we link multi-source NDVI 

data as a proxy for the state of vegetation. We find that 

eigenbehaviours can identify patterns in the wolves’ 

responses to dynamic environmental conditions that 

align with the current literature on the species. Our 

research highlights the potential for dimensionality 

reduction and sequence-based methods to identify 

patterns in large tracking databases linked to contextual 

data.   

Keywords: movement analytics, sequence-based 

representation, eigen decomposition  

1 Introduction 

Contextualised movement data incorporate the 

environmental conditions within which movement 

occurs by linking contextual layers to location points 

within a trajectory (Dodge et al., 2013), which often 

creates highly dimensional datasets that can be difficult 

to represent and interpret. Not all dimensions are 

always necessary because there often exists a smaller 

intrinsic dimensionality in the data set that explains 

most of the behavioural variance (Demšar et al., 2013): 

reducing dimensionality can therefore help to 

understand fundamental patterns within the data. There 

are many strategies for dimensionality reduction, but a 

combined use of a sequence-based representation and 

principal components analysis (PCA) is new in 

movement research.  

A sequence-based representation is traditional in 

medical sciences, particularly within bioinformatics 

(Abbott, 1995). In social sciences, a sequence 

represents life events of an individual as a string of 

characters between a precise start and end point in their 

lives (Ritschard and Studer, 2018). The same principle 

can be applied for representing movement trajectories, 

in which  trajectories can be converted to regularly 

sampled temporal series of characters describing states 

related of the moving entity or the surrounding 

environmental conditions (Brum-Bastos, Long and 

Demšar, 2018). 

Dimensionality reduction with eigen decomposition, a 

PCA method, has been used for object and facial 

recognition, shape and movement description, data 

interpolation and animation (Pentland and Williams, 

1989). Eigen decomposition retrieves the structures of 

the data cloud in the high-dimensions space by 

decomposing it into a set of eigenvalues and 

eigenvectors. Eigenvectors are orthogonal unitarian 

column vectors, ordered according to their eigenvalues 

(Vidal, Ma and Sastry, 2016), which represent 

dimensions of the data cloud: the first eigenvector 

identifies the dimension of the largest variance in the 

data, the second one the second largest variance, and so 

on. By identifying the most relevant eigenvectors of a 

movement data set represented as sequences of states 

of an individual, eigen decomposition can find 

commonly repeated behavioural patterns, the so-called 

eigenbehaviours (Eagle and Pentland, 2009). 

Eigenbehaviours characterize the variation in the 

behaviour sequence of an entity during a time period. 

Eigenvectors with higher eigenvalues represent a 

repeated behaviour and a linear combination of an 

individual’s eigenvectors can reconstruct and predict 

subsequent behaviour for each temporal unit in the 

sequential data. Eigenbehaviour analysis has been used 
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on sequential data representing people's daily 

behaviours (Eagle and Pentland, 2009), but it has yet to 

be applied in movement ecology. 

Searching for behavioural patterns in contextualised 

wildlife trajectories is a challenging task (Williams et 

al., 2019) - in this paper we propose the use of 

sequence-based representation followed by eigen 

decomposition for this purpose. We demonstrate these 

methods can be used together to explore how maned 

wolves (Chrysocyon brachyurus), the largest South 

American canids, respond to changes in their 

environment. Maned wolves are omnivores and their 

diet is mostly guided by the availability of prey and 

vegetation (Queirolo and Motta-Junior, 2007), 

therefore we expect that changes in vegetation vigour 

will trigger changes in their movement behaviour. We 

combine manned wolves’ GPS tracking data with a 

multi-source high spatio-temporal resolution NDVI 

(Normalized Difference Vegetation Index) data, an 

indicator used to characterize vegetation vigour from 

multispectral satellite images (Xu et al., 2012). Next, 

we define a sequence-based representation to convert 

annotated tracking data into annual sequences of daily 

NDVI states for each individual. Finally, we apply 

eigen decomposition to these sequences to extract 

recurrent patterns of NDVI used by maned wolves.  

The rest of the paper is structured as follows: first we 

describe the wildlife tracking data and NDVI dataset 

used in our analysis, followed by how NDVI data were 

integrated with wildlife tracking data and converted 

into sequences. Next, eigen decomposition is applied to 

identify patterns related to the vegetation use and 

availability. We conclude with a discussion and ideas 

for future research. 

2.0 Methodology 

2.1 Movement data and study area 

Maned wolves are a savannah adapted vulnerable 

species of omnivores found south of the Amazon 

Forest (Figure 1A). The main threat to the species 

comes from the continuous large-scale habitat losses 

(Noss and Lima, 2007), which are especially 

significant in Brazil because of the extensive 

conversion of Brazilian savannah into farmland 

(Fonseca et al., 1994). The Serra da Canastra National 

Park (CNP) (Figure 1B) has been key to the 

preservation of maned wolves and it is the home of the 

wolves whose tracking data are used in this study.  

 

Figure 1: A) The range of the maned wolf (Chrysocyon 

brachyurus) in South America. B) Borders of Serra da 

Canastra National Park (CNP) in Minas Gerais state in 

Brazil, where our wolves were tracked. C) Lobinha, a 

female maned wolf of approximately two years old, 

wearing a GPS tracking collar.  

We analysed a movement dataset collected between 

March 2007 and July 2015 by GPS collars attached to 

7 female and 6 male maned wolves (de Paula, 2016) 

with the tracking period varying from 59 to 841 days 

(Table 1 and Figure 2). Figure 1 shows the study area, 

land uses, the boundary of the CNP and the individual 

home ranges derived from tracking data. Home ranges 

(HR) are the areas used by an individual during its 

normal activities for foraging, mating and rearing 

(Burt, 1943). As is typical in movement ecology, we 

defined them by delineating the 95% utilisation 

distribution (UD) surface for each individual (Hayne, 

1949), where UD was calculated using kernel density 

estimation. 

Table 1: Tracked individuals, respective sampling rate, 

duration, start and end of monitoring period. Names of 

the same colour indicate a couple (maned wolves take 

only one mate for life). White indicates the absence of a 

mate in the tracking dataset. Source: Adapted from de 

Paula (2016). 
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Figure 1 - Home ranges for each individual in the 

Canastra National Park (CNP). Home ranges of the two 

individuals in each couple (Table 1) intersect to a large 

extent. The land use map in the background was 

produced by (de Paula, 2016). 

2.2 NDVI data 

NDVI (Normalized Difference Vegetation Index) is a 

proxy for the content and state of the live green 

vegetation, and it is used as an indicator of vegetation 

vigour. NDVI is calculated from the spectral 

reflectance in the red (𝑅𝑒𝑑𝜌) and near infra-red (𝑁𝐼𝑅ρ) 

wavelengths (Rouse et al., 1973): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅ρ−𝑅𝑒𝑑ρ

𝑁𝐼𝑅ρ+𝑅𝑒𝑑ρ
                                                     (1) 

NDVI values range from -1 to 1. Values smaller than 

0.1 are typically associated with bare rocks, sand, or 

snow; values around 0.2 to 0.5 are associated with 

sparse vegetation such as shrub, grasslands or 

senescence crops; values between 0.6 and 1.0 

correspond to dense vegetation, such as tropical forests 

or crops at their peak growth stage (Hurley et al., 

2014). 

We used a high spatio-temporal detail NDVI data set 

created from data from multiple satellites and the 

methodology proposed by Rao et al. (2015). We 

combined data from MODIS, which has high a 

temporal resolution and a low spatial resolution, and 

data from Terra - ASTER, Landsat 4-5-7-8, CBERS 2 

and CBERS 2B, which have a low temporal resolution 

but higher spatial resolutions. The high temporal 

resolution and high spatial detail of the fused data 

means that we had one NDVI image per day with a 

detail level of 30 meters instead of MODIS daily 

images with 250 m detail. Details of this multi-source 

NDVI data fusion are in (removed for peer review). 

2.3 Methods 

2.3.1 Annotating trajectories/home ranges and 

creation of sequences 

For each individual we annotated GPS tracking data 

with high-resolution NDVI using the nearest neighbour 

annotation, matching each GPS point with the closest 

NDVI value in space and time (Brum-Bastos, Long and 

Demšar, 2016). We further assigned all NDVI pixels 

that fell within a specific home range to the respective 

home range. 

To create the temporal state sequences for eigen 

decomposition, we followed a four steps process: 1) 

We computed the empirical distribution functions 

(EDF) of NDVI pixels within each home range for 

each day to characterise available resources; 2) We 

calculated average NDVI values for each day and 

wolf– this created numerical sequences of NDVI 

values for each wolf with one value per day; 3) Using 

the EDF of the respective day and home range of the 

specific wolf, we created another numerical sequence 

for each wolf, where the average NDVI was replaced 

with the empirical probability of the appearance of the 

average NDVI value on that day in that home range to 

identify the relationship between used and available 

resources; 4) Finally, we categorized the average NDVI 

values into states of use based on the following:  

 

𝑆𝑡𝑎𝑡𝑒 =  {

𝐻𝑖𝑔ℎ 𝑁𝐷𝑉𝐼, 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ > 0 𝑎𝑛𝑑 𝑃(𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ )  <  0.05;  

𝐿𝑜𝑤 𝑁𝐷𝑉𝐼,    𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ < 0 𝑎𝑛𝑑 𝑃(𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ )  <  0.05 ;
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝐷𝑉𝐼,                     𝐸𝑙𝑠𝑒                                

          (2) 

 

Here,  𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅  is the average NDVI value for a given 

day and home range, and 𝑃(𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ) is the probability of 

that value in that home range and day calculated from 

the respective EDF. This produced state sequences of 

high, low and average NDVI states at daily temporal 

resolution for each wolf, describing the average use of 

high-low-averagely vegetated habitat.   

In the next step we cut the state sequences for each 

wolf into annual sequences, which start on the 1st of 

July (a date that corresponds to the start of the wolf 

year, which is typically defined to start at the time 

when whelping rate peaks (de Paula et al., 2013). Wolf 

cycle consists of three periods: whelping (Jun-Sept, dry 

season), a non-reproductive period (Oct-Feb, wet 

season) and breeding (Mar-Jun, dry season). 

Each wolf year sequence was treated individually, even 

when there were multiple cycles linked to the same 
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wolf. We stacked all wolf year sequences into 𝐵(𝑥, 𝑦), 

a two-dimensional 𝑊 by 365 array (Figure 2), where 

𝑊 was the total number of sequences and 365 is the 

number of days within a year. Each day in this matrix 

was represented with one of the four characters 

corresponding to the three states (high (H), low (L), 

and average (A) NDVI ) or to no data (N). We 

converted 𝐵  into 𝐵′ , a 𝑊  by 365 𝑋 𝑛  array of binary 

values (Figure 2). 

 

Figure 2: Transformation from  𝑩 to 𝑩′ . The plot on the 

left, 𝑩(𝒙, 𝒚), corresponds to stacked wolf sequences over 

the course of 365 days. The plot on the right, 𝑩′(𝒙, 𝒚), 

represents the same data in the form of a binary matrix of 

365 days by 1460 (which is 365 multiplied by the four 

possible states). 

2.3.2 Eigenbehaviour analysis: identifying structure 

in vegetation use 

In order to identify particular behaviours, we then 

applied eigen decomposition to the 𝐵′ matrix, creating 

a set of 1460 eigenvectors with corresponding 

eigenvalues. The vectors with the highest eigenvalues 

are called the primary eigenbehaviours (Eagle and 

Pentland, 2009). As is typical in dimensionality 

reduction with PCA, we used a scree plot (Jolliffe, 

2002) to heuristically determine which 

eigenvectors/behaviours describe most of the variance 

and which can be eliminated (Figure 3). In movement 

context this means that eigenvectors with low 

eigenvalues reflect individual behaviour, whereas 

eigenvectors with higher eigenvalues reflect behaviours 

that are common to most wolves in the study, i.e., 

population behaviour and are the ones we are interested 

in. 

2.3.3 Data and software availability 

Analyses reported in this paper  can  be  reproduced 

using the Python code available on GitHub 

(https://github.com/vsbrumb/AnImage), GPS tracking 

data are available on movebank.org (MoveBank ID: 

304558706). MODIS satellite data were obtained from 

http://reverb.echo.nasa.gov/, Landsat 4-5-7-8 TM 

satellite data from http://earthexplorer.usgs.gov/ and 

CBERS 2-2B satellite data from 

http://www.dgi.inpe.br/CDSR/. 

3.0 Results 

The scree plot (Figure 3) shows that the first 

eigenbehaviour explained 45% of the variance in the 

data, the second 31.6%, the third 5.08%, the fourth 

4.08% and the fifth 2.57% .The percentage of variance 

plateaus from the 6th eigenbehaviour forward at less 

than 1% per eigenvector, therefore we kept only the 

first five eigenbehaviours which in total accounted for 

88.33% of the variance.  

 

Figure 3: Scree plot of eigenvalues ranks and percentage 

of variance explained by each. There were a total of 1460 

ranks, however the graph plateaus after the 6th rank. 

Figure 4 shows the five first eigenbehaviours with 

respective absolute coefficients of each eigenvector. A 

higher eigenvector coefficient indicates a higher 

contribution of a particular NDVI state on a particular 

day and a lower eigenvector coefficient the opposite.  

Eigenvectors in the concept of PCA are difficult to 

interpret (Jolliffee 2002), however, we in the following 

tentatively interpret the results in the context of how 

we defined the states. The first eigenbehaviour seems 

to correspond to years where wolves stay in areas of 

average NDVI before and during the wet season and 

start to choose higher NDVI at the end of the wet 

season. Others can be interpreted similarly, with 

differences for choosing different values of NDVI in 

different seasons. Further, all eigenbehaviours in the 

second row show a persistent trend of choosing areas 

of low NDVI at specific times of the year. 
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Figure 4 - The top five eigenbehaviours for all the wolves, where each column represents one eigenbehaviour and each row 

represents one of the NDVI states. Each box represents one year and each vertical line one day. Shades of red on each day 

indicate the respective absolute coefficients of each eigenvector, that is, the higher the coefficient on a particular day, the 

higher the importance of the particular NDVI state on that specific day. The row for the no data (N) state is omitted because 

it does not provide any information about the behaviour. The letters underneath the boxes indicate the seasons, D for dry and 

W for Wet. The season axis is magnified at the bottom of the picture where it is matched by information about the key 

biological periods for the species. 

To support an easier interpretation of eigenvectors in 

the context of wolf ecology, we simplified the 

sentences by selecting the state with the highest 

eigenvector coefficient on each day (Figure 5). The 

first eigenbehaviour shows a preferential selection of 

high NDVI areas after the wet season, the second one 

shows less preferential selection of high NDVI areas 

and only in the first half of the wet season, the third 

one shows preferential selection of high NDVI in the 

first half of wet season and less so at the beginning of 

the dry season. The fourth eigenbehaviour shows 

preferential selection of high NDVI areas from the 

middle of the wet season onwards and the fifth shows 

preferential selection of high NDVI areas during the 

entire year. The second, third and fourth 

eigenbehaviours show a pattern of preferential 

selection of low NDVI areas in the second third of the 

wet season and at the end of the dry season. 

4.0 Discussion and conclusion 

This paper demonstrates the potential of a combination 

of sequence-based and dimensionality reduction 

methods for identification of patterns in contextualised 

movement data. The advantage of our method is that 

eigenbehaviours are not limited by the number of 

trajectories or the time period to be covered in the 

analysis. However, an outstanding challenge is how to 

interpret resulting eigenbehaviour patterns and validate 

the methodology.  Interpreting eigenvectors is a well-

known problem for dimensionality reduction methods 

based on PCA (Demšar et al., 2013) - in the case of 

wildlife movement, this could be supported through 

collection of additional observational data on 

movement behaviour. 

In absence of observational data, which are costly to 

obtain, the patterns we identified were to some extent 

supported by current literature on how wolves use 

vegetated areas in different seasons. We found that 

most wolves choose greener areas during the dry 

season, which tentatively agrees with the current 

literature in which wolves have special preference for 

wolf's fruit (Solanum lycocarpum) in the dry season 

(Queirolo and Motta-Junior, 2007). This fruit grows on 

a flowering shrub with height up to 5 m and large 

leaves, which has a higher NDVI response than most 

other vegetation in the study area, such as the heath and 

other vegetation in the study area, such as the heath and 

grasslands. 
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Figure 5 - Sequences of states summarising the five first eigenbehaviours. Sequences were generated by selecting the state 

with the highest eigenvector coefficient at each time during the wolf year for each eigenvector. The letters in the horizontal 

axis indicate the seasons, D for dry and W for Wet. 

 

Most wolves double their food intake during breeding 

season (Stahler, Smith and Guernsey, 2006), which 

tentatively matches with our results that wolves are 

choosing areas with higher NDVI during the breeding 

season. Visits to areas of low NDVI may be linked to 

denning and whelping, as typically wolves choose 

rocky areas for this purpose and those have low NDVI.  

Visits to areas with higher NDVI could be linked to 

feeding and foraging since these animals eat not only 

fruits but also small mammals that are often found in 

vegetated areas.  

State sequences are a recent representation paradigm in 

movement research (Dodge, Laube and Weibel, 2012; 

De Groeve et al., 2016). The use of eigen 

decomposition on sequences has potential to aid with 

the generalization and reduction of thousands of 

trajectories to a few representative ones retrieved in the 

form of eigenbehaviours. In addition, eigen 

decomposition can help with the increasing demand for 

context-aware methods, especially for similarity 

analysis as it is able to separate group behaviour from 

individual behaviour by finding the first few principal 

components/eigenbehaviours of contextualised 

movement data.  

In this paper our trajectories were annotated with only 

one type of contextual data – the NDVI values. In 

sequence analysis this corresponds to the traditional 

single-channel analysis from bioinformatics (Abbott, 

1995) that considers only one type of states for each 

character in a sequence. However, movement is rarely 

dependent on one environmental variable only and 

often trajectories are combined with a number of 

different environmental descriptors (Gilbert et al., 

2017). Each of these can potentially build a separate 

sequence, which can be linked into a so-called multi-

channel sequence (Müller et al., 2008). For movement, 

a multi-channel approach was used to link human 

movement to diverse weather variables (Brum-Bastos, 

Long and Demšar, 2018), however, in the wildlife 

movement context, the multi-channel methodology is 

virtually unknown. We plan to extend the 

eigenbehaviours approach to a multi-channel situation 

on a wildlife tracking data set that describes long-

distance bird migration – the aim is to evaluate if and 

how birds respond to different components of the 

Earth’s magnetic field (inclination, intensity and 

direction) and if and how this drives their navigational 

strategies. 
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