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Abstract. During the last 20 years we have seen the re-

emergence of diseases; emergence of new diseases in 

new locations and witnessed outbreaks of varying 

intensity and duration. Spatial epidemiology plays an 

important role in understanding the patterns of disease 

and how they change over time and across space.  

The aim of this paper is to bring together a 

public health and geospatial data science perspective to 

provide a framework that will facilitate the integration 

of geographic information and spatial analyses at 

different stages of public health response so that these 

data and methods can be effectively used to enhance 

surveillance and monitoring, intervention strategies 

(planning and implementation of a response) and 

facilitate both short- and long-term forecasting.  

To demonstrate elements of this framework 

and how it can be utilized, we selected three case studies 

ranging from the current the global COVID-19 

Coronavirus pandemic of 2020 to more historical 

examples such as the John Snow Cholera outbreak of 

1854 and the Ebola outbreak of 2014 in West Africa. 

A variety of methods including spatial 

descriptive statistics, as well as methods for analysing 

patterns were used. The examples we provide can reveal 

sources of infection, connectivity between locations, 

delineate zones of containment and show the spread of 

an outbreak globally and locally across space and time.  

Keywords: geospatial technologies; public health; 

epidemiology; data science; geography; infectious 

disease, education 

1 Introduction 

During the past 20 years we have seen the emergence 

and re-emergence of many diseases (Figure 1), many in 

new locations including the current pandemic, COVID-

19 (Figure 2). 

A key component of staying healthy is to minimize 

our risk of getting sick. To do so, we want to know how 

to avoid getting ill by understanding where a disease is, 

when it is present, if there is a temporal component to its 

incidence, and what preventative measures we can take to 

stop us from becoming ill.  

Patterns influencing health and disease in the 

environment are complex and require an understanding 

of the ecology of the disease (agent, host, environment), 

how these interact in space and time), and how diseases 

may move through the landscape (mobility, connectivity, 

and dispersion pathways) so that we can respond (plan 

and implement control and prevention), and recover (seek 

Figure 1: Summary of disease outbreaks over the last 20 
years (2000-2020) based on the World Health Organization 
Disease Outbreak News (DONs) Reports (1). The word 
cloud shows disease based on the number of reports that 
contain that disease name in the summary report title 

provided by the DONs (N> 5 reports). Analysis was 
conducted in R. Diseases include those that may have 
occurred for a variety of reasons (8, 9) as summarized by 
the four categories.  

Includes: 

• emergence of new diseases in new locations

• evolution of disease resulting in the emergence of new
pathogens and resistance.

• re-emergence of eliminated diseases in the same or
nearby locations.

• regular occurrence of diseases in the same location
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diagnosis, prevent, and provide treatment) in a timely 

manner. This requires understanding the interplay 

between diseases, their environments, and their hosts 

(ecology of disease) and how these may change risk over 

time. We need to think simultaneously about how a 

disease agent and the host interact at various spatial and 

temporal scales in a dynamically changing environment 

and what the outcome of such changes may be.  

In recent years, access to novel data sources has been 

increasing with the availability of new devices that 

enable data to be collected easily, alongside point-of-

care diagnostics, at a precise location in time. These 

technologies range from mobile device add-ons (e.g. 

spectrometer), mobile apps, wearable technologies (e.g. 

GPS watches, Fitbits) and remote sensors (e.g. Wi-Fi 

loggers collecting a variety of environmental data; 

unmanned aerial vehicles (UAVs)), many of which have 

built-in GPS-enabled devices. In the COVID-19 era, 

apps specifically to help notify people of possible 

exposures using Bluetooth technology have been 

developed and are now in use (11). In addition, apps for 

restaurants and other social venues for patrons to 

register are being used to facilitate contact tracing (14). 

Through these data collection avenues, we are able to 

provide richer and more diverse sources of information 

about ourselves and the environments in which we live 

than ever before. Although we have moved into an era 

of digital exploration, there remain many challenges in 

using, analysing, integrating, and applying these data, 

particularly when they vary in quality and availability 

(both in terms quantity and at rapidity) (15, 16). 

Leveraging these data and technologies together with 

existing surveillance methods of humans and animals 

will be useful for improving our understanding of the 

mechanisms influencing health across different spatial 

and temporal scales; enhancing diagnostics and 

predictions; as well as developing preventative 

strategies. Furthermore, with increased mobility and the 

influence of external factors, such as changes in climate 

and globalization, we need to integrate multiple types of 

geographic data that capture not only the physical 

environment, but also human and social environments 

(e.g. perception, cultural, economic, political). This will 

facilitate a better understanding of what is happening at 

a local level, with regional level influences, as illustrated 

by the recent swift global distribution of the novel 

coronavirus ((SARS-CoV-2) also known as COVID-19) 

(17) (Figure 2). 

Approaches to disease mapping and spatial 

epidemiology range in complexity from the creation of 

simple maps (e.g. John Snow’s Cholera map of 1854 

(5)), graduated points (Figure 2) to deterministic, 

correlative, geostatistical and geocomputational 

modelling techniques as summarized in Table 1. For 

examples (see (18-20); and malaria maps using different 

methods that include: Suitability analysis (21); Bayesian 

geostatistical methods ((22); Geocomputational 

methods with host-pathogen-environment models (23)). 

Table 1: Summary of how geospatial information and spatial 
data methods have been used in health studies (compiled from 
a variety of sources: (24-30), (31); (32)  including COVID-19 
(33)).  

Type Purpose 

Create / transform 

Various Create geographic data to enable for the visualiza-

tion of disease risk. 

Various methods have been used that include con-

version of data, transformation of data, geocoding, 

georeferencing, spatial join, aggregation of data or 

projection of data. 

Visualization 

Carto-

graphic 

maps 

Disease maps provide a rapid visual summary of 

complex geographic information and may identify 

subtle patterns in the data that are missed in tabular 

presentations. 

• Mapping of disease incidence by points or ar-

eas (e.g. political boundaries (ward, county, 

district, province/state, country) to show 

where and when disease risk and health issues 

are prevalent 

• Presence/absence; Counts/Rates (mortality, 

confirmed cases). 

• Dot maps; graduated symbols; choropleth 

maps; density estimation maps 

Figure 2: Distribution of the novel coronavirus (COVID-

19) 2020 locally, regionally and globally (Data source: (2); 

ESRI country boundaries). 

 

Coronavirus outbreak of 2020 – In 2020, 75,765 cases of 

the coronavirus (COVID-2019) were confirmed globally 

resulting in 2,129 deaths (as of Feb 20th, 2020) (2). The 

source of the infection was the Huanan Seafood Wholesale 

Market, Wuhan, China which was shut down in early 

January to prevent further transmission (2). By Feb 4th, the 

virus had been transported globally to 24 countries. 
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Web-based 

mapping 

Use of the web-mapping tools and dashboards to 

map disease location and allow for interaction with 

the data and attributes 

• Geovisualization, interactive dashboard ana-

lytics (e.g. COVID-19 Dashboard used by 

World Health Organization (WHO) and Johns 

Hopkins University) 

Explore spatially explicit relationships, and evaluate and analyse 

spatial relationships 

Integration 

of geo-

graphic in-

formation 

and explo-

ration of re-

lationships 

Examine where transmissions are taking place in re-

lation to different geographies and information (see 

cartographic maps, web-based mapping and spatial 

methods) 

Correlation 

studies 
• Examine variations in disease incidence/risk 

in relation to different geographies 

• hypothesis-generating, as the unit of observa-

tion is the geographic group rather than the 

individual and associations observed at the 

group level 

• useful for developing and exploring hypothe-

ses of public health importance 

Cluster 

Analysis 
• Evaluate whether features are clustered, dis-

persed, or random. 

• Identify statistically significant hot spots, cold 

spots, or spatial outliers (where a disease 

cluster implies an excess of cases above some 

background rate bounded in time and space) 

• Useful for searching for unusual patterns  

• A variety of methods are available (e.g. Mo-

rans’ I, LISA, Getis Ord, Ripley K, SatScan) 

Connectiv-

ity  
• Physical connectivity 

o  Transportation networks (road, rail, 

flight, water) 

• Social Networks 

o Dedicated Social Network Analysis to 

understand how places are connected 

beyond just the physical connectivity. 

• Phylogeography 

o Provide information on the genetic 

similarity and/or evolution of organ-

isms through space and time 

o Useful for identifying source of infec-

tion and the role of place, events and 

networks in the diffusion of diseases 

Neighbour-

hood struc-

ture and 

composi-

tion 

• the structure and composition of the land-

scape surrounding focal sites are important 

for understanding heterogeneity and the influ-

ence of variations in local biotic and abiotic 

features in disease prevalence, risk and diffu-

sion due to the interaction of different popula-

tions 

Health in-

frastructure 

Planning & 

Accessibil-

ity 

• Combine location information with popula-

tion information to assess availability of 

health facilities.  

• Combine distance-allocation models with lo-

cation of health facilities to determine physi-

cal accessibility. 

• Useful for planning of health infrastructure 

needs (e.g. vaccination programs, availability 

of health care, accessibility to health care)  

Spatiotem-

poral dy-

namics of 

disease  

 

• retrospective analyses of spatiotemporally dy-

namic epidemics to understand what factors 

govern the spatial pattern and rate of spread 

of diseases. 

• characterize spatial variation in contempora-

neous (static) ecological risk of infection and 

potential causes of that variation. Ecological 

risk can be defined as the probability of infec-

tions risk? 

• Evaluate dynamically changing risk and/or 

spatial relationships 

GeoAI: Ma-

chine 

Learning, 

Deep 

Learning  

• Useful for sifting through large quantities of 

data both historically and in real-time to iden-

tify patterns, assess similarity and correlation 

• Used for syndromic surveillance, analysis of 

symptoms, sentiment and perceptions. 

• Assessment of predicted change 

• Used for understanding behaviour and con-

nectivity between places through analysis of 

mobility data (travel (flight, train, bus, 

bikeshare)), mobile phone, GPS data, pay-

ment data, social media and other volunteered 

information (traffic)) 

Modelling: Simple to advanced geocomputational methods. 

Suitability 

Mapping 

 

• Determine suitability of environment for dis-

ease vectors or pests of disease. Useful when 

data is limited. Parameter estimations are sub-

jective in nature.  

• Multi-criteria decision analysis (MCDA) or 

decision science: is used to logically evaluate 

and compare multiple criteria that may be 

conflicting.  

o Variety of methods can be used rang-

ing from simple Boolean logic to more 

complex decision analysis (analytical 

hierarchical process (AHP), fuzzy 

logic, weighted overlay)  

• Niche Modelling: Variety of methods and 

tools are available (e.g. ecological niche mod-

els) 

Spatially 

Explicit 

Models 

 

• Spatial Interpolation and Smoothing Meth-

ods: Interpolation and smoothing methods ap-

plied to spatial epidemiology, are useful for 

improving estimation of risk across a surface 

by creating a continuous surface from sam-

pled data points (filling in where data are un-

observed) or to smooth across polygons (ag-

gregate data). 

o Variety of methods ranging in 

complexity are available (Inverse 

Distance Weighted (IDW), Spline, 

Natural Neighbor, Trend (polyno-

mial), Kriging (Geostatistical 

method)   

• Mathematical Models: Useful for determin-

ing risk and changing risks; impact of inter-

ventions on disease transmission where multi-

ple scenarios can be studied and compared. 

Geocomputation allows for flexible, spatial 

simulation, but can be computationally inten-

sive. 

Spatial Re-

gression 

 

Standard statistical regression models are not appro-

priate for analyzing spatially dependent data. In-

stead, several spatially regression methods have 

been developed.  

• Spatial autoregressive models. Simultane-

ous autoregressive (SAR) models are fre-

quentist approaches designed to address spa-

tial autocorrelation. They incorporate spatial 

autocorrelation using neighborhood matrices 

that specify relationships between neighbor-

ing data points. 

• Bayesian regression models. Bayesian re-

gression models provide an alternative to 

SAR models. can be used to estimate the ef-

fects of potential risk factors related to a dis-

ease by including fixed covariates along with 

the random effects. 

• Geographically Weighted Regression 

(GWR), models spatially varying relation-

ships using a local linear regression model. 

Decision Support Systems 
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 • Can exploit multiple technologies (geograph-

ical information systems, statistical and math-

ematical models, decision-support modules), 

multiple data sources and permit widespread 

dissemination of epidemiological data. 

• Spatial simulation; geocomputation 

However, with big data analytics (34, 35), GeoAI (36) 

and increased access to geographic data, much more can 

be done with existing surveillance data. For food-, 

water- and air-borne infections, residential addresses 

and zip codes of people reporting symptoms and 

pathogens; stratified by age and sex, can be mapped in 

space and time to examine incidences of infections 

within precise geographic areas (e.g. tuberculosis in 

South Africa (37, 38) and for targeted responses (e.g. 

vaccine deployment for cholera in KolKata (39))). 

Geographic cluster detection even for infections with 

person to person spread, such as sexually transmitted 

and blood-borne are meaningful, as studies have 

demonstrated surprisingly dense clustering of street 

involved people who sell sex (e.g. (40)).  

To accomplish these different tasks, public health 

epidemiologists require sufficient training in concepts of 

geography and a variety of methodologies and 

techniques (e.g. (41-45)) including spatial analytical 

(28) and web-mapping methods, which are still largely 

absent from many educational curricula, with only brief 

mentions of these methods and tools  (41-47). Although 

there has been an increase in the inclusion of data 

science in the health sciences (e.g. (48)), spatial analysis 

and the ability to examine disease incidences within 

geographic contexts is still largely missing (49) as 

highlighted in the recent article (48) on data science for 

public health that does not include any reference to 

spatial data science. This is hindering the ability to 

incorporate crucial, process-based understandings of  

health events within the context of different geographies 

which may influence disease outcomes (49). 

Geographies may include population (e.g. density, 

lifestyle, demographic characteristics); physical 

environment (e.g. land use, climate [temperature, wind, 

precipitation], topography, water bodies, soil type); 

mobility (e.g., transportation nodes, infrastructure); 

health facilities (e.g. location, type, availability, and 

accessibility) or human and social geographies such as 

boundaries, places of interest, social venues, cultural 

locations, and activity spaces. Integrating these with 

disease analyses will enhance public health planning and 

intervention (28, 49). 

2 Methodology 

As technologies continue to evolve and different 

geographic data becomes available, how can we 

better incorporate these into a process that can help 

public health practitioners evaluate disease and 

health risks both in the short and long term?  

Essentially, how do we train epidemiologists in 

geography and geospatial technologies and methods?  

To address this, we have centred our evaluation around 

a public health response cycle that encompasses several 

steps important for investigating, evaluating, and 

managing disease incidence and outbreaks, as described 

in (42, 50-52) and summarized in Table 2a-c from a 

number of different reviews. We further demonstrate 

how different spatial and mapping methods and analyses 

may be used by providing several case studies that range 

from local outbreaks to a global pandemic. These 

include the John Snow Cholera outbreak of 1854, the 

Ebola outbreak of 2014 in West Africa and the ongoing 

global COVID-19 pandemic that started in 2020. 

2.1 Ecology of Disease - Detecting an outbreak or 

health event through surveillance:  

The initial stage of the cycle consists of detection where 

ideally, an outbreak or health event is discovered 

through consistent monitoring, and an unexpectedly 

high number of people in a small geographic location 

(e.g. one city or hospital) are diagnosed with it. 

Surveillance is defined as the collection, compilation 

and analysis of health conditions which includes 

dissemination of information to those who need to 

know, including health care staff and policy makers 

(53). Mandated by law for many infectious diseases, 

demographic, locating, laboratory and clinical data on 

people who have the condition (known as cases) are 

collected by health care and laboratory professionals 

who notify local, national and international (e.g. WHO 

(54)) public health agencies (55). Criteria for what 

constitutes a case of the disease under surveillance are 

published by state, provincial or federal, or international 

authorities and usually include a positive laboratory test 

for the pathogen and signs and symptoms consistent 

with infection. As soon as the number of cases rises 

above the epidemic threshold, based on past mean rates 

and standard deviations, a potential outbreak exists, 

which is verified after a preliminary check for issues 

such as possible laboratory or data entry errors. Many 

surveillance systems, particularly for infectious 

diseases, contain minimum data to describe the affected 

people by person, place, and time. Age and sex of 
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infected cases is tabulated and graphed, together with 

their residential addresses; dates of; onset, presentation 

at a clinic, specimen collected, and results reported to 

the public health department (e.g. DONs (1)).  

 

2.2 Developing an understanding of the ecology of a 

disease.  

These data, coupled with laboratory results on the 

pathogen identified ,are usually sufficient to form sound 

hypotheses as to source and exposure (50). Through the 

inclusion of geography, they allow for geographic 

visualizations and spatial analyses to be performed in 

GIS (Geographic Information Systems) and other such 

software packages. Through these methods and other 

case data, public health staff are able to identify clusters 

that highlight outliers or hotspots, examine interactions 

and relationships through the integration of different 

types of data (environment, host, pathogen) as well as 

compare cases with the rest of the population stratified 

by different attributes such as geography, time, 

symptoms, age, or sex. 

Table 2a: Ecology of Disease: A breakdown of the different 

steps important for investigating, evaluating, and managing 

disease incidence/outbreaks and the spatial analysis methods 

that are useful at each stage (adapted from (42, 51)) 

1. Surveillance 

and monitor-

ing: data col-

lection 

Collect data from authoritative and non-au-

thoritative sources, geocode/geo-reference 

cases, structure and manage data.  

2. Establish 

the existence 

of a disease/ 

outbreak and 

describe cases 

and how cases 

may be related 

 

• Where cases are located? Visualise case 

distribution (confirmed, suspected, dead) 

and spatial limits of disease/outbreak 

(e.g. dot map; intensity maps (Kernel 

density Estimates (KDE)); thematic 

maps; Thiessen polygons)  

• Are cases clustered? Identify and con-

firm clustering (e.g. Kernel density esti-

mates (KDE), Ripley K, Nearest Neigh-

bour analysis); Moran’s I, Getis-Ord G) 

and where significant clusters/outli-

ers/hotspots are located (Local Indicators 

of Spatial Association (LISA))  

• How are cases related? Context map-

ping analysis: integration of geographic 

data to assess where the cases are in rela-

tion to different points of interest (POIs) 

(e.g. topological analyses, overlays, sur-

face analysis; descriptive statistical anal-

ysis), distance between cases and POIs, 

distance (e.g. buffer, cost-distance analy-

sis), connectivity between places (e.g. 

network analysis) 

3. Examine 

disease pat-

terns and inter-

actions de-

velop hypothe-

ses 

 

• Where are the transmission zones and 

pathways? 

• Visualise distribution of cases in re-

lation to known risk factors or po-

tential sources (e.g. rate map 

(change maps (increase, decrease, 

unchanged)); thematic maps/choro-

pleth maps) and symptoms or other 

characteristics (gender, age, 

socioeconomic status, profession, 

social behaviour etc.) 

• Identify center of outbreak (e.g. 

spatial mean, median center)  

• Identify and locate significant clus-

ters (e.g. LISA; Getis Ord Gi* sta-

tistic, spatial scan statistic; hierar-

chical clustering; machine learning 

(Random Forest))  

• Identify high-risk areas (e.g. attack 

rates in zones at different distances 

from potential sources (cost dis-

tance analyses; KDE, LISA, Getis 

Ord Gi statistic, geostatistical anal-

ysis)  

• Use maps to assist with active case 

finding and locate areas of similar-

ity or defined distances or defined 

accessibility pathways 

• Why? How are cases related to trans-

mission zones and pathways? 

• Identify significant trends in attack 

rates with distance from potential 

sources (e.g. linear regression of 

log-transformed attack rates) and 

incorporate different factors (envi-

ronmental 

• Describe progression of outbreak 

through directional spread using 

standard deviation ellipse; space-

time maps; animations at different 

time intervals and using different 

visualizations); (SATScan); LISA 

analysis at different time intervals; 

rates of change and diffusion; net-

work pathway 

• Connectivity and interactions (e.g. 

map phylogenetic data, social net-

work graphs) 

• Assess context: examine hotspot 

and outlier areas with additional ge-

ographic data to assess where cases 

are in relation to different points of 

interest; population characteristics, 

network pathways, etc. 

• Develop models to capture disease dy-

namics and interactions?  

• Model concentrations of infections 

to understand transmission dynam-

ics (e.g. (geo)computational and 

simulation modelling; compart-

mental models; geostatistical mod-

els; agent-based models)  

2.3 Response - prevention planning and 

implementation of interventions to minimize risk, 

enable for recovery and treatment:   

Once we understand the ecology of the disease, the next 

stage of an outbreak or health event is to develop a 

response that includes implementing prevention 

measures that range from educating the public and 

health officials, to infrastructure needs such as providing 

sanitation, developing new vaccinations or the 

placement of new health facilities. In the last stage of the 

response cycle, surveillance for all pathogens of public 

health importance continues after prevention measures 

have been taken, to ensure that no new cases arise and 

to detect new outbreaks (Table 2b).  
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Table 2b: Response: A breakdown of the different steps 

important for investigating, evaluating, and managing disease 

incidence/outbreaks and the spatial analysis methods that are 

useful at each stage (adapted from (42, 51)) 

4. Re-

sponse:  

prevention 

measures 

 

• Forecasting and prediction of outbreak: 

Identify geographic areas at risk of future 

outbreaks (e.g. risk mapping)  

• Short and long term planning and imple-

mentation:  

• Spatial targeting of interventions 

(e.g. containment/isolation; barriers; 

vaccination campaign; health facili-

ties and treatment centers; mobile 

hospitals; installation of clean (run-

ning) water or sanitation systems; 

placement of ultraviolet lights (e.g. 

protect from TB in overcrowded 

shelters); placement of needle ex-

changes clean needles, drug equip-

ment) 

• Policy development and implementa-

tion 

2.4. Communication – informing the public 

During each of these stages, communication strategies 

are important to ensure up-to-date information is 

provided (Table 2b).  This can take many different forms 

ranging from published documents (1, 2) to interactive 

web maps (56, 57) that are updated in real-time (e.g. 

COVID-19 Dashboard provided by WHO (58); Johns 

Hopkins (59)) or at other time intervals (e.g. weekly (60) 

or adhoc (e.g. CDC Travel Recommendation Map (61)) 

depending on needs.  

Table 2c: Communication: A breakdown of the different 

steps important for investigating, evaluating, and managing 

disease incidence/outbreaks and the spatial analysis methods 

that are useful at each stage 

5. Communication 
Use maps (static and dynamic interactive 

web maps) and other visualization dash-

boards to communicate areas of risks; pro-

vide updates of disease outbreak/event to 

the public; provide results to health offi-

cials/policymakers. 

3 Case Studies 

To demonstrate how different spatial and mapping 

analyses may be incorporated at each of the different 

steps of this framework, we provide several examples 

ranging from local outbreaks to a global pandemic. 

These include the John Snow cholera outbreak of 1854, 

the Ebola outbreak of 2014 in West Africa and the global 

COVID-19 Coronavirus pandemic of 2019-ongoing.  

3.1 Software and Data Availability Sub-Section 

All data used during each of these analyses are available 

in the public domain and are listed in Table 3. All 

analyses were completed in ArcGIS and Excel.  

Table 3: Data Sources used for the case studies 

Case Study Ex-

ample 

Data Source 

Cholera 1854 Digitized from John Snow’s map. 

Ebola 2014-2016 

Outbreak 

(62-64) 

COVID-19 in NL Data are available from (65) at 2 week in-

tervals 

Global COVID-19 

Data 

WHO (2); ECDC;  JHU (66); PA Health 

Data (67) 

Country Boundary 

Data 

ESRI country boundaries 
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Figure 4: Cholera Outbreak of 1854: Where were the 

cholera deaths located? How did these deaths relate to 

the environment and each other? View the location of 

deaths: Visualize the distribution of deaths (A) example 

of the Cholera Map of 1854 with digitized points, (B) in 

relation to the water pumps (B) and assess where the 

mean centre of the outbreak (C) and where the highest 

density of deaths occurred (C,D). Summarize deaths 

by water pump: Thiessen polygons were used to create 

boundaries for each pump, where all areas inside the 
boundary are closest to a single pump. This was used to 

find the total number of deaths closest to a particular 

pump (B) and summarized in (D). Kernel Density 

Estimates (KDE) was used to aggregate points to create 

a continuous surface to show where the highest number 

of deaths occurred and possible zone of containment. 

Analysis performed in ESRI ArcGIS 10.8. 

 

Figure 5: Ebola Outbreak of 2014-2016: Location of 

Ebola cases were obtained from the WHO. Weekly 

Ebola cases were reported at district levels for each of 

the countries, Guinea, Sierra Leone, and Liberia.  (A) 

Where Ebola cases were reported: Choropleth maps 

were used to capture the total number of cases within the 

outbreak area to show areas with the highest number of 

cases. (B) Epi curve showing the number of cases for 

each of the countries. (C) Who was affected when? 

Weekly distribution of cases: The mean center for each 

week was mapped to show where the mean center of the 

outbreak was recorded over time and (D) the directional 

movement of the outbreak was determined using the 

standard deviational ellipse. Spatial analyses were 

performed in ESRI ArcGIS 10.8. 

 

Description of outbreak: 500 deaths were detected 250 yards from 

the Cambridge & Broad Street intersection in 10 days. 

Ecology of the Disease - Determine sources of infection:  

1. Visualize and examine outbreak cases: Map the location of 

all infected cases to determine the relationships between them 

and the environment in which they are interacting. Examine 

how close the cases are to each other. Determined if cases 

were clustered together and identify common activity spaces 

and potential sources of infection. 

2. Collect more data: Conduct in-depth interviews of ill and 

well people to obtain further information on all possible hy-

pothetical exposure locations to the pathogen.  

3. Identify source of infection: single vs multiple sources of 

infection: From the interviews/questionnaires and maps, 

identify additional potential sources of infection.  

a. Hypothesis: That contaminated water from Soho 

caused deaths from cholera (5). 

b. Hypothesis: That contaminated water from the Broad 

street pump caused cholera in Golden Square (5). 

Findings: The majority of the deaths occurred in the area closest to 

the Broad Street pump.  

Response:  Request the parish officers to stop the water supply of 

Broad Street Pump by removing the pump handle  

Continued surveillance: To ensure no new cases, and detect new 

ones, Snow went  back 2 – 3 weeks later (5).  

 

Description of outbreak: Originally an 18-month-old child 

playing beneath a bat infested tree in Meliandou, Guinea, a small 

settlement of 31 people. Several relatives, midwives and 

traditional healers in Meliandou developed fever, vomiting and 

black stools, diarrhoea, and dehydration. It was thought to be 

cholera, until it spread to 4 other places, and WHO was alerted on 

13 March 2014. The investigation started and Ebola was identified 

21 March 2014 (4). 

Ecology of the Disease - Determine sources of infection:  

Originally found in bats, Ebola may contaminate fruit and places 

where children play, then transmits person to person by direct 

contact through broken skin; mucous membrane body fluids, 

contact with contaminated items, clothes, bedding, and medical 

equipment, infected bats, non-human primates, and sex with an 

infected person.  Ebola is new in West Africa where populations 

are more urban (6).  

1. Visualize and examine outbreak cases: Map the location 

of Ebola cases over time to assess the spatial distribution of 

cases and spread of disease. 

2. Collect more data: Collect detailed information of cases, 

where and when they occurred and of their contacts through 

contact tracing.  On Jan 24, the head of the health post in 

Meliandou informed public health about 5 people with diar-

rhoea who died; the disease appeared similar to cholera, so 

nothing was done. Then MSF investigated again on Jan 

27th, and also indicated cholera. The Guinea Ministry of 

health issued an alert March 13; WHO Africa investigated 

14 – 25 March and found cases in three different places 

linked to the largest city with health care closest to Meli-

andou (6) 

3. Identify source of infection: single vs multiple sources of 

infection. There does not seem to have been any. 

Response:  Investigations into contacts and cases, safe burial for 

those who died (mandatory cremation); quarantine those affected 

to a crowded slum of 75,000 people; closure of markets; restriction 

of movement of patients and contacts, and curfews (12) 

Findings: weak health systems, undetected cases migrated to 

Sierra Leone and Liberia; crowding of cases (12) 

Continued surveillance: To ensure no new cases. 
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Figure 6: Communicating risk and response: (A) 

Maps showing areas of risk at week 8 and week 12 

during the pandemic and how the centre of risk changed 

from China to Europe (see graph). (B) an interactive 

weekly local risk of COVID-19 in the Netherlands of 

two-week summaries of reported cases (Source: (65)) 

and (C) shows the changing areas of risk using the 

cluster and outlier analysis (Anselin Local Moran’s I) 

with spatial relationship defined as contiguity (edges 

and corners). (C) Shows the same information in B but 

highlights clustering (e.g. high-high: high incidence 

rates surrounded by high incidence rates; low-low: low 

incidence rates surrounded by low incidence rates; high-

low and low-high: dissimilar areas or outliers where 

there are areas of high incidence rates surrounded by 

areas of low incidence rates and vice-versa). Analysis 

for (C) were performed in ESRI ArcGIS 10.8.  

 

(D) global COVID-19 travel risk map (Source: (61)); 

(E) global vaccination updates (68) (Source: (69)). 

  

4 Discussion 

By their very nature, the geospatial sciences are 

interdisciplinary, central to everything we do, and to 

everything with which we interact. Maps and geospatial 

technologies have been useful for showing where 

disease outbreaks may be taking place; identifying 

potential sources of infection and determining who may 

be affected when and where. However, the steep 

learning curve associated with using many GIS 

packages has resulted in its slow uptake in many fields 

(70). As we enter the digital (data) revolution and the 

age of web mapping (70); it will become critical to 

develop ways that integrate these methods and data so 

Description of outbreak: Unusual pneumonia was detected in 

27 people in Wuhan, China, most of whom were vendors at a 

seafood and wildlife market as of Jan 2 (3). 

Ecology of the Disease - Determine sources of infection:  

1. Visualize and examine outbreak cases: Map the loca-

tion of all infected cases to determine what relationships 

exist with each other and the environment in which they 

are interacting. Examine how close the cases are to each 

other. Determine if more of these cases are clustered to-

gether than expected by chance, given random place-

ment, allowing for sex and age. Identify overlapping ac-

tivity spaces and common “hang out” locations. Add 

context by mapping where the infected are in relation to 

other places in the area frequented by those that are ill. 

Identify common features within the area of interest (e.g. 

food sources, markets).  

2. Collect more data: 121 contacts being observed by phy-

sicians, Jan 3 (7). Conduct in depth interviews with those 

that are ill and those that are well to obtain further infor-

mation on all possible hypothetical exposure locations to 

the pathogen. Obtain detailed data on symptoms, clinic 

visits and hospitalisations; places visited just before each 

person became ill (e.g. restaurants, parties, day trips, 

markets) along with interactions with animals and where 

these took place. 

3. Identify source of infection: single vs multiple sources 

of infection: From the in-depth interviews/questionnaires 

and maps, identify additional potential sources where 

respiratory disease may have been acquired. Source iden-

tified as a coronavirus (10). 

a. Hypothesis: Transmission by person to person is 

most likely given the number of cases in Japan 

South Korea and the number of confirmed health 

care workers that are infected. 

b. Hypothesis: Mode of transmission is by droplet, 

and/or contaminated surfaces. 

Response: Close the market in Wuhan.  Implement social-

distancing measures; temperature checks on travellers into 

Hong Kong (13); create technological apps to monitor the 

situation; develop and roll-out a vaccine to reduce infections. 

Findings: Ongoing. From the time the market closed to the 

isolation of infectious people and the implementation of social 

distancing, it reportedly took 5 weeks for no new locally 

transmitted cases to emerge. Since then, monitoring has 

continued with various closures and lockdowns to manage cases 

locally and at a country level.   

Continued surveillance: To ensure no new cases. Surveillance 

is ongoing as variants emerge. Surveillance is ongoing of 

vaccinations rollouts and coverage. 
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as to enhance communication efforts (71), sharing of 

sensitive data (see (72, 73)) and analytical capabilities. 

Examples of these include better integration of 

geographic analysis with other types of data such as 

phylogenetic data (74) (75); clustering methods (76) and 

forecasting in real-time (77) at  all stages of public health 

surveillance, planning and response. This has been 

highlighted by the many analyses, maps and interactive 

dashboards that have been created during the COVID-

19 pandemic (78, 79); including identifying hotspots 

(80), modelling risk (81) (82) and spread (83) as well as 

integrating environmental data to examine factors 

influencing COVID-19 (84) and the need for 

demographic characteristics (85) to better assess who 

may be at risk when.  

As we move forward, we need to develop new 

methods and integrate Geography, GIScience and 

Spatial Data Science into the core curriculum of public 

health to provide a unified approach across space and 

time so that we can improve how we monitor and 

manage health and well-being and are better prepared 

for the next outbreak.  
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