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Abstract. Identifying determinants of tourist destina-
tion choice is an important task in the study of nature-
based tourism. Traditionally, the study of tourist be-
havior relies on survey data and travel logs, which
are labor-intensive and time-consuming. Thanks to
location-based social networks, more detailed data is
available at a finer grained spatio-temporal scale. This
allows for better insights into travel patterns and in-
teractions between attractions, e.g., parks. Meanwhile,
such data sources also bring along a novel social influ-
ence component that has not yet been widely studied
in terms of travel decisions. For example, social influ-
encers post about certain places, which tend to influ-
ence destination choices of tourists. Therefore, in this
paper, we propose a socially aware Huff model to ac-
count for this social factor in the study of destination
choice. Moreover, with fine-grained social media data,
interactions between attractions (i.e., the neighboring
effects) can be better quantified and thus integrated into
models as another factor. In our experiment, we cali-
brate a model by using trip sequences extracted from
geotagged Flickr photos within two national parks in
the United States. Our results demonstrate that the so-
cially aware Huff model better simulates tourist travel
preferences. In addition, we explore the significance of
each factor and summarize the spatial-temporal travel
pattern for each attraction. The socially aware Huff
model and the calibration method can be applied to
other fields such as promotional marketing.

Keywords. nature-based tourism, socially aware Huff
model, tourist destination choice, geotagged social me-
dia, Flickr
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1 Introduction

Nature tourism, i.e., tourism that is based on the natural
attractions of an area, has gone through rapid growth
over the past two decades (Balmford et al., 2009), es-
pecially for national parks in the United States, ac-
cording to visitation statistics by National Park Ser-
vice.1 Identifying and evaluating relevant determinants
of tourist flows is important. On the one hand to pro-
mote tourism, and on the other hand it helps to pro-
tect natural lands. Prior work on nature-based tourism
relies on manually collected travel logs and survey
data, which are time-consuming, labor-intensive, and
limited in temporal coverage (Puustinen et al., 2009;
Nahuelhual et al., 2013). The emergence of location-
based social networks (LBSNs) and volunteered geo-
graphic information (VGI), such as Flickr, Instagram,
Facebook etc., together with geotagging technology,
provides more fine-grained spatial and temporal data,
which equips us with a new lens to understand travel
patterns as they relate to natural attractions.

Additionally, LBSNs play an increasingly important
role in travel decision making process (Leung et al.,
2013). For example, places like Horseshoe Bend,
Devil’s Bathtub, etc., once being hidden gems, are
now receiving a large number of visitors annually.
Social media has been regarded as the main culprit
for the sudden and overwhelming popularity of these
places (Djossa, 2019). More specifically, geotagged
photos posted by social media influencers (SMIs) can
rapidly attract new visitors (Glover, 2009). These in-
fluencers are usually users with a large number of fol-
lowers and have established credibility in certain fields
that can shape attitudes of tourists and thus influencing
their travel preferences (Freberg et al., 2011; Li, 2016).
Intuitively, a scenic photo posted by a user with 50k
followers has a much broader potential influence than
a user with 50 followers. Therefore, we argue that so-
cial factors brought by increasingly used social media
need to be taken into account as a new norm to comple-
ment traditional destination choice models. To justify
such an argument, we specifically explore this social
effect in nature-based tourism destination choices, be-
cause tourists tend to share geotagged photos on social
media platforms along their trips (Tasse et al., 2017).

Moreover, existing work has shown that fine-grained
spatio-temporal data collected from social media can

1https://irma.nps.gov/Stats/

be used to quantify visitation rates (Wood et al., 2013),
to estimate visitor flows (Orsi and Geneletti, 2013;
Kim et al., 2019), and to detect popular sub-regions
and temporal activity patterns (Heikinheimo et al.,
2017). These studies illustrate the capability of using
LBSNs to capture temporal variations in tourist visit-
ing, with some places (e.g., dive resorts) being more at-
tractive in summer and others (e.g., ski resorts) in win-
ter. In addition, interactions between places (i.e., the
neighboring effects) can be better quantified with so-
cial media data. For example, we can estimate the inter-
actions between Horseshoe Bend and those attractions
in its surroundings (Glen Canyon, Antelope Canyon,
Grand Canyon, etc.), based on which we can further
explore how they affect potential travel decisions of
tourists to Horseshoe Bend, thereby uncovering inter-
esting travel patterns that are difficult to detect using
traditional data.

To explore how social factors and neighboring effects
contribute to tourist destination choice in natural at-
tractions, we propose a socially aware version of the
well-known Huff model (Huff, 1964), which was orig-
inally used to calculate the probability of a customer
shopping at each retail store.

The contributions of this work are as follows:

• We propose a socially aware Huff model, which
incorporates both social factors and neighboring
effects, to estimate the probability of tourists vis-
iting specific places.

• The proposed method is calibrated on a data set
containing 10-year geotagged Flickr photos in
two national parks, whose results outperform the
baseline Huff model.

• We explore the spatial and temporal variability of
model parameters that are associated with attrac-
tiveness, distance, and neighboring effect in the
socially aware Huff model.

The remainder of this paper is organized as follows.
Section 2 introduces related work on tourism, geo-
social media, and the Huff model. Section 3 briefly in-
troduces the Flickr data set used for the study and ex-
plains the trip reconstruction process. A socially aware
Huff model is introduced in section 4 together with the
model calibration method. In section 5, we present the
model calibration results and explain the spatial and
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temporal variability of the parameters used in the so-
cially aware Huff model. Finally, we summarize our
findings and discuss future directions in section 6.

2 Related Work

2.1 Tourism and Geo-social Media

The use and role of social media has been widely dis-
cussed in tourism research (Leung et al., 2013). Work
by Zheng et al. (2012) used Flickr data to discover
regions of attractions (RoAs) and explored tourists
movement patterns in relation to the RoAs. Simi-
larly, Hu et al. (2019) extracted popular attractions and
tour routes using a graph-based network in New York
City from Twitter data. Majid et al. (2013) proposed
a context-aware personalized travel recommendation
system and evaluated it based on a Flickr data set.
Li et al. (2018) used Flickr data to compare the spa-
tial overlap of tourists’ and locals’ destinations in ten
US cities. Work by Mou et al. (2020) analyzed spatio-
temporal distribution and changes of inbound tourism
flow in Shanghai with Flickr data.

In the past decade, social media has evolved into an
important player in tourism advertising and promo-
tion (Bakr and Ali, 2013). Litvin et al. (2008) showed
that travelers are increasingly influenced by electronic
Word-of-Mouth (eWOM) from social media. Parsons
(2017) echoed the similar idea that Instagram influ-
ences tourist decision-making, especially for younger
generations. Jalilvand and Samiei (2012) examined the
influence of eWOM and showed that it has a signifi-
cant impact on tourist attitudes towards visiting Isfa-
han, Iran. Tham et al. (2020), however, conducted in-
terviews with tourist decision-makers in Australia and
revealed that social media’s role appears to have only
moderate-low influence on destination choice. In line
with such research, we include a social influence factor
and examine the impact of social media on destination
choices. We quantify the social impact that influencers
could bring to a place by measuring the place attrac-
tiveness given the travel preference of tourists.

2.2 Huff Model

There have been many research efforts towards tourist
destination choice and sequential tourist flows (Nico-

lau and Más, 2008; Wu et al., 2012; Yang et al.,
2013). The Huff model (Huff, 1964) is one of them,
though it was originally developed to predict retail
sales and consumer behavior. The Huff model esti-
mates the probability of consumer patronizing retail
stores based on two factors: attractiveness of a store
and travel cost, which can also be applied to tourism
research. Misui and Kamata (2016) adopted the Huff
model to show the effect of travel time on visiting prob-
ability to spa destinations in Japan. Similarly, Nicolau
(2008) studied tourist sensitivities to distance and price
for destination choice in Spain using a national tourist
choice behavior survey data. Yang et al. (2013) con-
ducted a logistic model to study the inter-dependencies
among destination choices when two or more desti-
nations are included in a trip, accounting for the fu-
ture dependency in the multi-destination choice behav-
iors. Recently, more work has shown the importance
of the temporal factor that is missing in the original
Huff Model. Gong et al. (2020) included weekday and
weekend variations when calculating visiting probabil-
ity of shopping areas using taxi trajectory data in Shen-
zhen and New York. Liang et al. (2020) proposed a T-
Huff model and proved that it outperforms the original
static Huff model when estimating temporal store visits
using SafeGraph POI visits data. Likewise, we include
the temporal factor in our study given the availability
of social media data.

3 Data and Trip Reconstruction

In this section, we introduce the data set used for the
study in section 3.1 and explain how we reconstruct
trips from the geotagged photos step by step in sec-
tion 3.2.

3.1 Data and Study Area

In this study, we collected geotagged Flickr photos of
tourist attractions within national parks using Flickr’s
public API.2 Two national parks - Acadia National
Park and Yosemite National Park - have been selected
from the top ten most visited national parks in the
United States over the past decade, as reported by Na-
tional Park Service. These geotagged Flickr photos
were collected from January 1, 2010 to December 31,

2https://www.flickr.com/services/api/
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2019. Each photo is associated with its metadata in-
cluding photo ID, owner ID, taken date, latitude, longi-
tude, title, and the number of views. The total numbers
of the geotagged Flickr photos and unique users in the
data set are summarized in Tab. 1.

Table 1 The numbers of geotagged Flickr photos and
unique users retrieved for this study.

Park Number of photos Number of users
Acadia NP 34,933 1,879
Yosemite NP 50,384 3,653

3.2 Trip Reconstruction

3.2.1 Identifying attractions using HDBSCAN

Spatial clustering is widely applied to point pattern
analysis such as hot spot detection. One of the most
popular clustering methods is DBSCAN (Ester et al.,
1996), which is a density-based clustering algorithm.
It requires two parameters: search radius (ε) and min-
imum number of points (minPts) within the search ra-
dius. Despite its broad applications, it is difficult to de-
termine the ε in the original DBSCAN algorithm due
to varying density distributions of points. In this paper,
we adopt HDBSCAN (Campello et al., 2013; McInnes
et al., 2017), a hierarchical density-based clustering al-
gorithm, which addresses the aforementioned issue by
using flexible ε values to identify attractions from the
geotagged Flickr photos.

To identify a proper value for MinClusterSize, we com-
pare different clustering results with the geographic
distribution of top attractions listed on TripAdvisor3 in
the two national parks. Based on this comparison, Min-
ClusterSize is set to 1% of the total number of photos,
which is 349 and 504 for Acadia and Yosemite Na-
tional Parks, respectively.

After applying the HDBSCAN algorithm, 13 clusters
are extracted from Acadia National Park and 21 clus-
ters from Yosemite National Park. We calculate the
centroids of the clusters and label each cluster with
the nearest attraction listed on TripAdvisor or Google
Maps to its centroid coordinates. Fig. 1 shows the dis-
tribution of geotagged photos, clustering results, as
well as the identified attraction names of Acadia and
Yosemite National Parks.

3https://www.tripadvisor.com/

3.2.2 Extracting trip sequences from geotagged
photos

With attractions being identified, each photo in the
cluster is labeled with an attraction name (or cluster
ID). To extract trip sequences, we first group all pho-
tos by their owner ID and then sort them by the date
taken. We consider a trip as a temporally-ordered se-
quence of photographed locations taken by the same
user. Given the possibility that one user could make
several trips to the area over the years, we set a time
threshold λt to distinguish these trips. If the time dif-
ference between two consecutive photos from the same
user is larger than λt, we separate them into two differ-
ent trips. Here, we set λt to 4 days, which is the aver-
age length of a stay in both national parks according to
National Park Statistics.4, 5

Thus, if a user took a photo at attraction A, attraction
B, and then attraction C within the λt constraint, we are
able to capture this trip sequence as [A, B, C] based on
the timestamp of each geotagged Flickr photo. For our
data set, 1,949 trip sequences were extracted from the
clustered geotagged photos in Acadia National Park,
and 3,426 trip sequences from Yosemite National Park.

3.2.3 Calculating visiting probabilities from trip
sequences

With the trip sequences extracted, we are able to con-
struct a flow matrix based on the trip segments from
all trip sequences. For example, [A, B] and [B, C] are
two trip segments from the trip sequence [A, B, C].
The visiting probability is calculated proportional to
the total number of outgoing trips for each attraction in
the flow matrix. A monthly visiting probability matrix
is also calculated in order to capture temporal factors
in later computations. Fig. 2 visualizes the overall trip
flows in the two national parks using flowmap.blue.6

Further details of each attraction are provided in Tab. 8
and Tab. 9.

4https://www.nps.gov/acad/planyourvisit/faqs.htm
5https://www.nps.gov/yose/learn/management/statistics.

htm
6https://flowmap.blue/
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(a) Acadia National Park

(b) Yosemite National Park

Figure 1. Photo clusters detected by HDBSCAN in the two national parks.
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(a) Acadia National Park

(b) Yosemite National Park

Figure 2. Flow map visualization of trips in the two national
parks. Attractions are represented as nodes. The size of nodes
is determined by the total number of incoming and outgoing
trips. The width of edges is determined by the number of
trips.

4 A Socially Aware Huff Model

In this paper, we leverage the Huff model (Huff,
1964) with multi-destination travel behaviors being
taken into account (Stouffer, 1940; Um and Cromp-
ton, 1990). Fig. 3 is used to illustrate the neighboring
effect in a multi-destination trip. In Fig. 3(a), a tourist
at Origin O has two destination choices A and B, with
equal distance to origin O. In this case, destination B
should be preferred since it has more future choices
in its neighborhood compared with destination A. Fur-
thermore, Fig. 3(b) illustrates the effect of attractive-
ness. When destinationA andB have the same number
of future choices in their neighborhood and the same
distance to Origin O, then intuitively the destination
with more attractive future choices in its neighborhood
would be preferred. Orpana and Lampinen (2003) used
the term “store centralities” to model the effect of its
neighboring outlets on a store’s utility. The term can
be interpreted as the possibility of interaction between
a store and its neighbors (Hansen, 1959). The “cen-
trality” concept is applied to model tourist destination
choice as well, with the assumption that people tend to
travel to places with more attractive future choices.

4.1 The Original Huff Model

The original Huff Model (Huff, 1964) is designed to
estimate the probability of customers at each origin pa-
tronizing a given store among all stores as their desti-
nation choices. It takes two factors into account: attrac-
tiveness and distance. Attractiveness can be computed
as a function of many attributes of a store, including
the store size, number of parking spaces, customer re-
views, etc. The classic form of the Huff model can be
expressed as:

Pij =
AαjD

β
ij∑n

j=1A
α
jD

β
ij

(1)

where Pij represents the probability of a customer at
location i visiting store j; Aj is the measure of attrac-
tiveness of store j;Dij is the distance between location
i and store j; and n indicates the total number of stores
in the data set. The parameters α and β (α >0, β <0)
are associated with the attractiveness and distance fac-
tors, respectively.
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(a) Different number of future choices for desti-
nation A and B.

(b) Same number of future choices for destina-
tion A and B. Circle size represents the measure
of attractiveness.

Figure 3. Diagram of future choices in multi-destination
travel behavior.

4.2 Socially Aware Huff Model

In this paper, we propose a socially aware Huff model
to include social factor and neighboring effect, based
on the assumptions that: (1) People tend to choose
more attractive travel destinations; (2) People tend to
choose closer travel destinations; (3) People tend to
choose travel destinations with more beneficial future
choices. Based on the original Huff model shown in
Eq. 1, the socially aware Huff model can be expressed
as:

Pijt =
AαjtD

β
ijC

θ
jt∑n

j=1A
α
jD

β
ijC

θ
jt

(2)

where Pijt represents the probability of a tourist at lo-
cation i visiting attraction j at time t; Ajt is the attrac-
tiveness of attraction j at time t;Dij is the distance be-
tween origin i and attraction j; Cjt is the term used to

describe the neighboring effect of attraction j, relative
to other attractions at time t; and n indicates the total
number of attractions in the area. The parameters α, β
and θ are associated with the attractiveness, distance,
and neighboring effect factors, respectively.

In the following, we explain how we quantify the three
terms, i.e., Ajt, Djt, and Cjt, mathematically. Previ-
ous research has shown that the number of geotagged
photos and the number of unique users can be used
to represent the attractiveness of a place (Kádár and
Gede, 2013; Leung et al., 2017). Here, we include three
proxies to estimate the attractivenessAjt for later com-
parison. Log transformation is performed to address a
right-skewed distribution of values. The three types of
attractiveness A(l)

jt , l = 1,2,3, can be expressed as:

A
(1)
jt = log(Mjt + 1) (3)

where Mjt is the number of photos at attraction j at
time t.

A
(2)
jt = log(Ujt + 1) (4)

where Ujt is the number of unique users at attraction j
at time t.

A
(3)
jt = log(Mjt×

1

Ujt

Mjt∑
k=1

Vkjt + 1) (5)

where Vkjt is the number of views for photo k at attrac-
tion j at time t. We use the product of the number of
photos and the average number of photo views per user
at attraction j to include a social influence factor. Given
the fact that social media influencers (SMIs) have more
followers than others, thus the photos they post would
have more views and greater social impact, we include
photo views per user here to account for potential exis-
tence of SMIs who upload photos at an attraction. We
hypothesize that the attraction with more photo views
per user is more attractive.

The termCjt, measuring the neighboring effect, can be
modeled as:

Cjt =

∑K
k=1

Akt

Dkj∑K
k=1

1
Dkj

(6)

where K is the total number of nearest neighboring at-
tractions being considered. Cjt reflects the assumption
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that people tend to travel to places with more promis-
ing future choices in a multi-destination trip. We con-
sider K-nearest neighbors of attraction j, calculating
their attractiveness A(l)

kt at time period t, and weight
A

(l)
kt by their distance to attraction j,Dkj . A higherCjt

value is assigned to attractions with closer and more at-
tractive neighbors. Finally, we define the term Dij as
the estimated driving distance using the Distance Ma-
trix API7 from Google Maps.

4.3 Calibration Method

Parameters of the Huff model need to be calibrated
before further studying the travel patterns. Here, we
use the linear regression calibration method - Ordi-
nary Least Squares (OLS), which estimates one set of
parameters α, β, and θ, that best fit the model based
on observations. The estimation process is executed
by minimizing the sum of squared residuals in a lin-
ear model. OLS calibration returns fixed values for the
parameters and assumes that they are homogeneous
across the study area. The general form of OLS regres-
sion can be expressed as:

y =
n∑
i=1

βixi + ε (7)

where y is the dependent variable; xi is the ith inde-
pendent variable; n is the number of independent vari-
ables; βi is the regression coefficient for the ith inde-
pendent variable; and ε is the random error.

To conduct OLS, the socially aware Huff model in
Eq. 2 is rewritten in a log-transformed-centered form,
according to Nakanishi and Cooper (1974), in order to
obtain the least square estimate of parameters:

(8)ln(Pijt/P̃it) = αi ln(Ajt/Ãt)

+ βi ln(Dij/D̃i) + θi ln(Cjt/C̃t)

where P̃it, Ãjt, D̃i and, C̃t are the means of Pijt; Ajt;
Dij and Cjt over attraction j, respectively. For each
origin attraction i, the model will estimate one best fit
parameter set (αi, βi, and θi).

7https://cloud.google.com/maps-platform/routes

4.4 Software and Data Availability

Data used in this paper can be accessed with the public
Flickr API.8 The query used to access the data, code
and interactive data visualization (Fig. 2) are avail-
able on GitHub.9 The workflow underlying this paper
was partially reproduced by an independent reviewer
during the AGILE reproducibility review and a repro-
ducibility report was published at https://doi.org/10.
17605/OSF.IO/4CPM3.

5 Results and Discussions

5.1 Overall Calibration Results

In this section, we examine the overall calibration re-
sults for the two national parks and discuss the neces-
sity of incorporating social factors and neighboring ef-
fects in the socially aware Huff model.

5.1.1 K-Nearest Neighbors

First we need to decide on the number of neighbors K
in order to calculate the centrality Cjt in Eq. 6. Val-
ues of K = 2, 3 and 5 are considered. For both Acadia
and Yosemite National Parks, K = 2 gives the best per-
formance, with the lowest mean squared error (MSE)
and highest R2. More details are shown in Tab. 7. The
following calibrations are subsequently all computed
with K = 2 as the number of nearest neighbors in the
centrality term Cjt.

5.1.2 Social Influence

In Tab. 2, we show the calibration results using dif-
ferent measurements of the attractiveness factor, A(l)

jt ,
expressed in Eq. 3, Eq. 4 and Eq. 5. Based on R2 and
Akaike information criterion (AIC), we observe that
for both national parks, the attractiveness A(3)

jt per-
forms the best (highest R2 and lowest AIC values),
compared with the other two measurements (i.e., the
number of photos and the number of unique users).

8https://www.flickr.com/services/api/
9https://github.com/meilinshi/

Socially-aware-Huff-model
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Table 2 OLS regression results for different measurements of attractiveness

Park Measurement of Attractiveness R2 AIC ∆AICi wi

Acadia NP A
(1)
jt 0.743 724.6 14.9 5.810× 10−4

A
(2)
jt 0.741 728.1 18.4 1.010× 10−4

A
(3)
jt 0.753 709.7 0 0.9993

Yosemite NP A
(1)
jt 0.715 2401.7 25.4 3.050× 10−6

A
(2)
jt 0.717 2393.0 16.7 2.363× 10−4

A
(3)
jt 0.721 2376.3 0 0.9998

∆AICi is a measure of each model i to the model with the minimum AIC.
Akaike weights wi = exp(−0.5×∆AICi)/

∑N
r=1 exp(−0.5×∆AICr)

Table 3 OLS regression results for different factors considered

Park Model R2 AIC ∆AICi wi

Acadia NP SA model 0.753 709.7 0 0.9859
SA model w/o N 0.746 718.2 8.5 0.0141
SA model w/o T 0.744 748.5 38.8 3.703× 10−9

Huff model 0.738 755.8 46.1 9.624× 10−11

Yosemite NP SA model 0.721 2376.3 1.3 0.3430
SA model w/o N 0.721 2375.0 0 0.6570
SA model w/o T 0.714 2412.4 37.4 4.969× 10−9

Huff model 0.714 2410.6 35.6 1.222× 10−8

∆AICi is a measure of each model i to the model with the minimum AIC. Models with ∆AICi < 2 can also be considered to
have substantial support (Burnham and Anderson, 2002).
Akaike weights wi = exp(−0.5×∆AICi)/

∑N
r=1 exp(−0.5×∆AICr)

The results of Akaike weights (wi), which can be in-
terpreted as the probability that model i is the best
model (Anderson et al., 2000), also show the same
conclusion. Hence, we select A(3)

jt to estimate the at-
tractiveness of an attraction, where the combination of
photo views, the total number of photos, as well as the
number of users are taken into account. The results
indicate that including a social factor (i.e., the more
photo views and potential social impact SMIs could
bring to a place) can better simulate tourist preferences.

5.1.3 Temporal and Neighboring Effect Factors

To examine the overall performance of the temporal
factor and neighboring effect in the socially aware Huff
model (SA model), we compare it with SA model
without the neighboring effect (SA model w/o N), SA
model without the temporal factor (SA model w/o T),
and the original Huff model (Huff model), whose re-
sults are shown in Tab. 3. The proposed SA model that

includes both temporal factor and neighboring effect
has the highest R2 and lowest AIC values for Acadia
National Park. As for Yosemite National Park, the per-
formance of SA model and SA model w/o N are sim-
ilar in terms of R2 and AIC, while both models fit to
the data better than SA model w/o T and Huff model.
However, we cannot conclude that SA model w/o N is
significantly better than SA model or vice versa based
on ∆AICi and wi values. The reason why we get sim-
ilar performance for SA model and SA model w/o N
may be due to the geographic distribution of attractions
in Yosemite National Park (see Fig. 4). Most attrac-
tions are clustered (i.e., they have similar neighbors)
at the center of the park, thus the neighboring effect
may not be as significant as those of Acadia National
Park. More details about this will be discussed in sec-
tion 5.2. In general, the SA model w/o N performs bet-
ter than the SA model w/o T, since the temporal factor
provides more fine-grained data and for national parks,
to include temporal variation when estimating visiting
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(a) Acadia National Park (b) Yosemite National Park

Figure 4. Geographic distribution of attractions in the two national parks.

patterns is crucial. Overall, the experimental results in-
dicate the necessity to incorporate both social and tem-
poral effects into the Huff model.

5.2 Regional Variability of Parameters

After examining the globally fitted parameters for the
entire park, we further explore the regional variabil-
ity of the parameters. The intuition underlying this ex-
periment is that the relative impacts of attractiveness
(α), distance (β), and neighboring effect (θ) can be
different across regions in the park. Therefore, cali-
bration is conducted for each attraction in the two na-
tional parks using observed visiting probabilities cal-
culated from the trip sequence data. Each attraction is
treated as an origin to estimate how visitors choose
their next destination starting from this origin attrac-
tion. The OLS calibration gives one set of parame-
ters (α, β, and θ) per origin, reflecting how attrac-
tiveness, distance and neighboring effect, respectively,
contribute to the visiting probabilities. The results for
attractions within Acadia and Yosemite National Parks
are shown in Tab. 4 and Tab. 5. Only these significant
origin attractions with more than 30 observed trips are
included in the table.

In general, a large absolute estimation for α, β, or θ
indicates a significant influence of attractiveness, dis-
tance, or neighboring effect to the destination choices,
respectively. Tab. 4, demonstrates the parameter esti-

mations for attractions in Acadia National Park. Here,
we see a relatively small estimation of α for Cadillac
Mountain, which is the top 1 traveler favorite attraction
in Acadia National Park ranked by TripAdvisor. This
means that compared with visitors at Boulder Beach,
Sand Beach, and Jordan Pond etc., after visiting Cadil-
lac Mountain, they are less interested in the attractive-
ness of an attraction to visit the next destination. The
absolute values of β estimations are greater for Bass
Harbor and Bubble Rock, which indicate that visitors
tend to choose closer next destinations starting from
these two attractions. A larger θ estimation indicates
a higher probability of visitors choosing destinations
with closer and more attractive neighbors, most likely
clustered attractions, such as the Boulder Beach, Thun-
der Hole and Sand Beach cluster (see Fig. 4(a)).

Tab. 5 includes the parameter calibration results for
attractions in Yosemite National Park. We see rela-
tively larger estimations of α for attractions clustered
at the center of the park, El Capitan Meadow, Lower
Yosemite Fall, Sentinel Bridge, etc., which are shown
in the red box of Fig. 4(b). The largest absolute value
of β estimation for Tuolumne Grove indicates that
visitors at this attraction are very likely to choose a
closer next destination. Since Yosemite National Park
is roughly 15 times larger than Acadia National Park
in area, absolute values of β estimations are gener-
ally smaller compared with those of attractions in Aca-
dia National Park. This indicates visitors are less sen-
sitive to distance and are willing to travel further in
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Table 4 OLS regression results for Acadia National Park

Origin Attraction α β θ MSE R2

Bass Harbor 0.8863* -0.8608* 0.1155 0.273 0.731
Northeast Harbor 0.1684 -0.1137 0.4079* 0.208 0.838
Bar Harbor 1.3226*** 0.2359 -0.0224 0.322 0.739
Cadillac Mountain 0.6601 -0.0218 0.1907 0.360 0.707
Bubble Rock 0.1722 -0.4898* 0.3994* 0.322 0.791
Jordan Pond 1.5456*** -0.0670 -0.0133 0.203 0.886
Boulder Beach 2.0496*** 0.3590* -0.3446 0.334 0.751
Thunder Hole 1.2109** -0.1355 0.0232 0.301 0.782
Sand Beach 2.1061*** 0.0374 -0.3318 0.397 0.742

Significance level: ***p ≤ 0.001; **p ≤ 0 .01; *p ≤ 0 .05.

Table 5 OLS regression results for Yosemite National Park

Origin Attraction α β θ MSE R2

Mariposa Grove of Giant Sequoias 1.6864*** -0.1023 -0.1060 0.433 0.743
Tioga Lake 1.4482* 0.0467 0.0381 0.770 0.615
Tuolumne Grove 0.7325* -1.1656** 0.4270*** 0.368 0.850
Tuolumne Meadows 0.8987** -0.4552*** 0.0985 0.388 0.776
Olmsted Point 0.2791 -0.0827 0.3661** 0.399 0.731
Tenaya Lake 0.9528* -0.3699*** 0.0838 0.495 0.786
Wildcat Falls 1.6585*** -0.0451 -0.0818 0.355 0.799
Mirror Lake 1.8888*** -0.0490 -0.2065 0.343 0.802
Vernal Falls 0.9077*** -0.0532 0.0236 0.294 0.666
El Capitan Meadow 1.1824*** -0.1147 0.0205 0.208 0.827
Tunnel View 0.5004 -0.2491 0.1451 0.368 0.646
Bridalveil Falls 1.3182*** 0.0177 -0.1471 0.216 0.736
Yosemite Valley View 0.9467** -0.2522** 0.0218 0.253 0.844
Glacier Point 1.3761*** 0.0131 0.0563 0.500 0.703
Curry Village 1.3791*** -0.0800 -0.1009 0.281 0.781
Four Mile Trailhead 1.5207*** -0.0087 -0.1623* 0.168 0.836
Ahwahnee Historic Building 1.0631*** -0.1871* 0.0486 0.333 0.795
Valley Visitor Center 1.0149*** -0.0792 -0.0690 0.197 0.743
Lower Yosemite Fall 1.2195*** -0.0022 -0.0135 0.200 0.803
Sentinel Bridge 1.2127*** -0.1188** -0.1572** 0.182 0.827

Significance level: ***p ≤ 0.001; **p ≤ 0 .01; *p ≤ 0 .05.

Yosemite National Park. The estimation of parame-
ter θ is greater for dispersed attractions like Olmsted
Point and Tuolumne Grove, as can be seen in Fig. 4(b).
This means visitors at these two attractions are more
attracted to clustered attractions (i.e. attractions with
closer and more attractive neighbors), most likely the
Tunnel View and Glacier Point clusters as shown in
the map. In Tab. 5, we also see significant negative θ
values, which reveal that visitors tend to travel to less
clustered attractions (i.e., attractions with further and
less attractive neighbors), especially for visitors at Four

Mile Trailhead, Bridalveil Falls, Sentinel Bridge, etc.,
that are already in a clustered region. For origin attrac-
tions with θ closer to 0, it means that neighboring effect
is not an important factor for visitors to choose their
next destination at these places.

5.3 Temporal Variability of Parameters

To further explore the temporal variability of the model
parameters, we divide the trips in Yosemite National

AGILE: GIScience Series, 2, 14, 2021 | https://doi.org/10.5194/agile-giss-2-14-2021 11 of 16



Table 6 OLS regression results for Yosemite National Park Summer vs. Non-Summer months

Origin Attraction Time of the year α β θ R2

Wildcat Falls Summer 1.7046* 0.0519 -0.1768 0.744
Non-summer 1.4516* -0.1670 0.0945 0.859

Vernal Falls Summer 0.8962** -0.1116* -0.0355 0.679
Non-summer 0.9788*** 0.0379 0.0978 0.693

El Capitan Meadow Summer 1.2480*** -0.0869 0.0372 0.918
Non-summer 1.0437** -0.2023 0.0010 0.768

Tunnel View Summer 0.4185 -0.4669* 0.1651 0.756
Non-summer 0.7634 -0.0111 0.1197 0.607

Bridalveil Falls Summer 1.4542*** 0.1098 -0.1979 0.729
Non-summer 0.9029 -0.1969 -0.0592 0.755

Curry Village Summer 1.3597*** -0.0117 -0.0348 0.800
Non-summer 1.2933*** -0.2013** -0.1963* 0.800

Valley Visitor Center Summer 0.8253*** -0.0782 -0.0404 0.705
Non-summer 1.1169*** -0.0841 -0.0643 0.784

Lower Yosemite Fall Summer 1.1861*** 0.0315 0.0102 0.841
Non-summer 1.2295*** -0.0319 -0.0319 0.787

Sentinel Bridge Summer 0.7097* -0.2088** -0.0307 0.779
Non-summer 1.4738*** -0.0374 -0.1927** 0.875

Significance level: ***p ≤ 0.001; **p ≤ 0 .01; *p ≤ 0 .05. Summer months include May, June, July, August, and September.

Park to summer and non-summer based on the park
travel recommendation.10 A couple of attractions in
the park are seasonal, with many roads and trails being
closed due to snow in winter. For example, Tuolumne
Meadows typically opens from late May or June to
November and Glacier Point typically opens from May
to November. According to most travel guides, the best
time to visit Yosemite is May to September. Hence, we
use this time range to represent summer months here,
and the rest as non-summer months. In Tab. 6, only ori-
gin attractions with more than 30 observed trips during
both time periods are included.

Based on Tab. 6, we observe that the α estimations
mostly stay the same for different times of the year.
However, visitors at Bridalveil Falls are more sensi-
tive to the attractiveness factor in summer months,
while visitors at Sentinel Bridge are more interested
in the attractiveness factor in non-summer months.
Attractions like Vernal Falls, Tunnel View, Sentinel
Bridge, etc., show larger absolute values of β estima-
tions in summer. This means visitors at these attrac-
tions are attracted to closer attractions during the sum-
mer months, and further attractions for non-summer
months, which is potentially due to closures of closer

10https://www.nps.gov/yose/planyourvisit/traffic.htm

attractions in non-summer months. Meanwhile, we see
also larger absolute θ estimations for Curry Village
in non-summer months and Bridalveil Falls in sum-
mer months. A positive θ estimation means visitors are
more attracted to clustered attractions (i.e., attractions
with closer and more attractive neighbors) and negative
value means the opposite.

6 Conclusions and Future Work

In this work, we explore the visiting probabilities of
attractions within two national parks using a socially
aware Huff model, in which both social factors and
neighboring effects are taken into account. To cali-
brate the model parameters, we use the observed trip
sequences extracted from the geotagged Flickr pho-
tos within Acadia and Yosemite National Parks from
the year 2010 to 2019. For the social factor, we have
shown that incorporating the number of photo views
when evaluating the attractiveness of a place achieves
a better result than simply using the number of photos
or number of users alone. The calibration results also
demonstrate that the socially aware Huff model con-
sidering a temporal factor in place attractiveness and
neighboring effects is more accurate than the original
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Huff model in predicting visiting probabilities of at-
tractions within both national parks.

We further explore the visiting patterns of each at-
traction within the two national parks based on model
parameters of attractiveness, distance, and neighbor-
ing effect factors. In general, visitors in Acadia Na-
tional Park are more sensitive to the distance factor
and neighboring effects when choosing their next des-
tination, while visitors in Yosemite National Park are
more sensitive to the attractiveness factor. We have also
shown that there is a regional and temporal variability
of the model parameters.

This work is based on our three assumptions that: (1)
People tend to choose more attractive travel destina-
tions; (2) People tend to choose closer travel destina-
tions; (3) People tend to choose travel destinations with
more beneficial future choices. In fact, there could be
many other factors contributing to the visiting proba-
bility of a place. Taking the social factor alone as an ex-
ample, traveling under social influence or taking copy-
cat photos (Picheta, 2021) has become an emerging
trend. In future work, we plan to consider more com-
prehensive measurements to evaluate the social impact
of geotagged photos in order to better capture the travel
patterns. Furthermore, this work is only studied using
existing attractions within national parks. We plan to
look at more than just two parks in the future, explore
new methods to discover emerging travel destinations
and study their interactions with the surroundings.
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Appendix

Regression results with different K values selected
for K-NN

Attractions Summary
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Table 7 OLS regression results for different K values selected for K-Nearest Neighbors

Park Time of the year K MSE R2

Acadia National Park All time 2 0.351958 0.753
3 0.355672 0.750
5 0.360020 0.747

Summer months 2 0.239118 0.780
3 0.241003 0.778
5 0.241888 0.777

Non-summer months 2 0.470965 0.766
3 0.479230 0.762
5 0.490113 0.757

Yosemite National Park All time 2 0.373372 0.721
3 0.373495 0.721
5 0.373465 0.721

Summer months 2 0.310437 0.714
3 0.310878 0.714
5 0.311528 0.713

Non-summer months 2 0.430608 0.735
3 0.430768 0.734
5 0.431058 0.734

Summer months include May, June, July, August, and September for both parks.

Table 8 Summary of attractions in Acadia National Park

Attraction Number of photos Outgoing trips Incoming trips
Schoodic Institute 1119 53 64
Bass Harbor 2298 260 288
Southwest Harbor 723 109 111
Northeast Harbor 605 67 76
Bar Harbor 6259 433 357
Wild Gardens of Acadia 550 60 66
Cadillac Mountain 3285 349 345
Penobscot Peak 776 16 15
Bubble Rock 703 83 89
Jordan Pond 1250 227 250
Boulder Beach 536 85 102
Thunder Hole 977 167 185
Sand Beach 1253 216 177
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Table 9 Summary of attractions in Yosemite National Park

Attraction Number of photos Outgoing trips Incoming trips
Mariposa Grove of Giant Sequoias 1787 135 135
Tioga Lake 1054 111 111
Tuolumne Grove 555 65 53
Tuolumne Meadows 1630 151 165
Yosemite West 674 35 31
Olmsted Point 890 168 165
Tenaya Lake 626 123 128
Wildcat Falls 724 147 110
Mirror Lake 875 134 150
Vernal Falls 2349 205 229
El Capitan Meadow 1010 175 197
Tunnel View 1987 489 414
Bridalveil Falls 1835 366 332
Yosemite Valley View 1469 231 249
Glacier Point 2165 250 288
Curry Village 855 140 157
Four Mile Trailhead 1269 246 225
Ahwahnee Historic Building 560 91 107
Valley Visitor Center 1788 201 197
Lower Yosemite Fall 869 164 167
Sentinel Bridge 1194 267 284
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