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Abstract. Historical maps are frequently neither 

readable, searchable nor analyzable by machines due to 

lacking databases or ancillary information about their 

content. Identifying and annotating map labels is seen 

as a first step towards an automated legibility of those. 

This article investigates a universal and transferable 

methodology for the work with large-scale historical 

maps and their comparability to others while reducing 

manual intervention to a minimum. We present an end-

to-end approach which increases the number of true 

positive identified labels by combining available text 

detection, recognition, and similarity measuring tools 

with own enhancements. The comparison of 

recognized historical with current street names 

produces a satisfactory accordance which can be used 

to assign their point-like representatives within a final 

rough georeferencing. The demonstrated workflow 

facilitates a spatial orientation within large-scale 

historical maps by enabling the establishment of 

relating databases. Assigning the identified labels to 

the geometries of related map features may contribute 

to machine-readable and analyzable historical maps. 

Keywords: historical maps, text detection, text 

recognition, text extraction, optical character 

recognition, levenshtein distance, georeferencing 

1 Introduction 

Automatically extracting labels from historical maps is 

not as straightforward as it is the case for current maps 

(Chiang, 2017; Lin and Chiang, 2018). A frequent lack 

of in-depth information, which is generally 

implemented by databases within current maps, impairs 

a simple search or analysis of places, street or building 

names, and other local designations within historical 

maps. As a large part of existing attempts are restricted 

to e.g. a particular cartographic style and therefore not 

transferable to others, detecting text in these scanned 

and often complex maps is an ongoing challenge 

(Nazari et al., 2016). 

The purpose of this study is to demonstrate a universal 

solution for an automated detection and recognition of 

text elements from large-scale (≥1:10,000, Kohlstock 

(2004)) historical maps without the need of making 

major individual adjustments for individual maps. With 

this goal in mind, we have been able to locate and label 

geographical features which, in general, are not 

accessible from historical maps. Besides, a contribution 

to an approximate georeferencing of historical maps 

has been made. 

We present an automated workflow for detecting and 

recognizing labels from historical maps and comparing 

them with current street names. This matching enables 

a spatial referencing of further streets and places so that 

an initial spatial orientation within a historical map is 

possible. The gained information may be useful for 

subsequent database productions or comparisons 

between different maps, e.g. from various periods. 

This paper is structured as follows. In Sect. 2, an 

overview of current challenges and related work 

concerning text extraction from historical maps is 

presented. Section 3 illustrates details on our used data 

and methodology before experimental results of 

individual stages (detection, recognition, and 

comparison of map labels) of our end-to-end approach 

are reported in Sect. 4. Finally, Sect. 5 concludes the 

paper by discussing further potential enhancements and 

future work. 

2 Current challenges and state of research 

Compared to current digital maps, a simple scan of a 

historical map represents no more than an ordinary 

bitmap image consisting of a number of pixels, each 

holding a color value. It can be seen as a hybrid of 

similar color regions, textures, and strokes (Ye and 

Doermann, 2015). An automated distinction between 
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text and other map elements such as geometries of 

buildings or roads is considered as major challenge. 

For monochrome historical maps, this differentiation 

cannot solely be based on on color information 

(Iosifescu et al., 2016). The great stylistic variety 

among historical maps and their individual typefaces 

raise a claim for further differentiators when applying 

automated approaches such as machine learning. 

Recurring patterns and shapes, which are utilized e.g. 

in the course of automated face detection or the 

identification of roads for autonomous driving, can 

rarely be found within old maps and their labelling 

(Nazari et al., 2016). Other, technically induced 

drawbacks turning the described issue into a complex 

task are a low graphical quality or perspective 

distortions which are caused by scanning processes, for 

instance. 

The mentioned aspects often cause unsatisfactory 

results when applying (semi-)automated text detection 

and recognition to historical maps. Manual post-

processing becomes necessary as soon as parts of map 

labels have not been identified or a context to similar 

words is missing (Chiang et al., 2020; Chiang and 

Knoblock, 2014). 

Both automated and semi-automated processes aiming 

at the identification of text in historical maps imply a 

series of advantages and drawbacks. With semi-

automated methods a higher recognition rate of a 

greater variety of map content can be achieved, 

whereas, at the same time, laborious manual processing 

is essential. Hence, only a small quantity of maps can 

be processed by such time-consuming approaches. 

Previous research also showed limitations to highly 

specific map types or typefaces (e.g. straight aligned 

and horizontal labels or uniform text sizes) do exist 

(Chiang and Knoblock, 2014). A number of authors 

have suggested the utilization of a Hough transform to 

extract text from images or maps but have not not 

considered curved labels (Fletcher and Kasturi, 1988; 

Velázquez and Levachkine, 2004) or even alphabetic 

characters (Chen and Wang, 1997). Methods employed 

by Goto and Aso (1999) and Pouderoux et al. (2007) 

which identify text in maps based on the geometry of 

individual connected components do not consider 

characters of various sizes. Cao and Tan (2002) made 

use of individual thresholds to detach the black map 

layer consisting of text and contours as well as of 

connected components to differentiate between those. 

Although this is considered a much faster approach 

compared to a Hough transform, their tailor-made size 

filters cannot handle overlaps between text and other 

map features apart from specific line types (Tombre 

et al., 2002). 

An increasing number of studies are based on the early 

involvement of a gazetteer or a comparable database 

available from other sources to match place names with 

those extracted by small-scale maps (Milleville et al., 

2020; Simon et al., 2014; Weinman, 2013). However, 

this so-called geoparsing only works with a 

comprehensive gazetteer and for place names which do 

not shift over time. These rarely exist for historical 

large-scale maps. 

To properly address the mentioned issues, Laumer 

et al. (2020) assigned each pixel either to a map’s 

foreground (resp. labels) or background with the help 

of convolutional neural networks. Within their 

approach, labels, or rather clusters built up from 

interrelated characters, were interpreted, manually 

matched, and corrected by the combined use of 

Google’s Vision API and a local gazetteer. Machine 

learning approaches may enable a universal solution to 

automatically detect and extract text from a variety of 

maps. Although their application requires a large 

amount of input training data it offers the advantage to 

process data without any manual intervention (Chiang 

et al., 2020). With Strabo, Chiang and Knoblock 

(2014) provide a command line tool for detecting text 

within maps which is not only based on color 

differences but also on other characteristics such as the 

similarity of text sizes or distance measures between 

individual characters. Its application may be promising 

when examining monochrome maps. 

Until now, machine learning has not been widely used 

to analyze historical maps. Instead, binarized connected 

components or other bottom-up approaches have been 

applied onto maps to detect labels (Weinman et al., 

2019). So far lacking in the scientific literature, this 

paper addresses an appropriate combination of 

automated text detection and recognition from 

historical large-scale maps with the aim of extracting 

machine-readable information. 

3 Materials and methods 

3.1 Data 

For demonstrating our suggested approach with an 

illustrative example, we chose a large-scale historical 

map of the city of Hamburg from 1841 (exemplary 

extract in Fig. 1). Map features such as buildings, built-

up areas, roads, railroads, stations, drainage, and docks 
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are illustrated (Hamburg, Germany 1853). Due to the 

map’s salient color composition and texture the human 

perception of map objects and their differentiation is 

facilitated (Schlegel, 2019). The dark labels, primarily 

designating streets, squares, and water bodies are 

clearly visible on the bright background but frequently 

connected to or even overlapping textured objects. 

According to general recommendations, a high 

resolution (≥300 dpi) of the scanned input map is ideal 

so that characters are large enough to be readable by 

automatic text recognition tools (Milleville et al., 

2020). With regard to a reduction of computational cost 

and time, an appropriate map subset illustrating as 

many differing map features as possible was chosen for 

further procedure. The input image, as seen in Fig. 1, 

was stored in lossless PNG format. 

 

Figure 1: Subset of Hamburg, drawn under the direction of 

Willm. Lindley, Esqr. C.E. April 1841; engraved by B.R. 

Davies used as exemplary dataset (Hamburg, Germany, 

1853). 

3.2 Text detection 

With the objectives of 

• reducing manual user interaction within the 

entire workflow and 

• increasing the number of true positive labels 

for a subsequent text recognition 

a separation of the map’s text from non-text elements 

was performed using the automatic machine learning 

approach Strabo 1  (Chiang and Knoblock, 2014; 

Weinman et al., 2019). Being based on OpenCV’s 

EAST text detector, Strabo is able to detect 

cartographic labels of different typefaces, sizes, 

orientations, and curvatures and even those overlapping 

                                                           
1 Li et al. (2019) 

with other map elements (Chiang and Knoblock, 2014; 

Tombre et al., 2002). Also, blurred, reflective, or 

partially obscured input images can be processed up to 

a certain point (Rosebrock, 2018a). The open source 

tool implements functions of available Python libraries 

(e.g. NumPy, OpenCV, SciPy, TensorFlow, Matplotlib) 

for vector and image processing, statistical 

computation, machine learning, and visualization. It 

separates a text layer from the rest of an input image 

based on differences in color, text size ratios, and 

appropriate text samples (Chiang and Knoblock, 2014). 

As an output, Strabo supplies a vector dataset including 

rectangular bounding boxes each holding an (raster) 

input image area where text was detected (see upper 

third of Fig. A1 in Appendix). 

3.3 Additional adjustments 

As is the case with many applications, Strabo regularly 

detects only parts of map labels or even omits them 

entirely. Further manual post-processing is necessary 

for these results (Chiang et al., 2020). While avoiding 

an individual editing for each map – whether via pre- 

or post-processing – we focus on a universal solution to 

this issue. Regardless of a map’s apparent condition, 

year of creation, style, or color composition a 

transferability to other similar large-scale maps is 

desirable. 

When working with Strabo we could determine the 

following points which might have prevented an 

adequate detection of labels:  

• Specific label orientation due to the lack of 

corresponding training data (Chiang, 2019). 

As suggested by Tesseract’s (see also 

Sect. 3.4) user documentation, we addressed 

this issue by repeatedly rotating the input 

image (Tessdoc, 2020). Thus, having five 

input images in total (rotated through 0°, 

+45°, +90°, -45°, and -90° resp.), the share of 

true positives of all existing labels throughout 

the map, called recall, could be increased by 

about 50% (see (b) in Fig. 3). As can be seen 

in Tab. 1, this also applies for other maps 

examined. 

• Overlapping map elements such as textures, 

lines, or other labels (see examples in Fig. 2). 

This is assumed to be a main drawback in the 

course of text detection (Abdullah et al., 2015; 

Tofani and Kasturi, 1998). A vast amount of 

existing algorithms operate on the assumption 

that black text is in contrast to different-
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colored features. However, with a fluent 

transition between labels and other map 

elements of the same color their 

differentiation is scarcely possible within 

typically black and white historical maps. Due 

to their occasionally recurring patterns, 

textures are often mistakenly identified as text 

by automated detection processes. Tofani and 

Kasturi (1998), Cao and Tan (2002), Chiang 

and Knoblock (2014), as well as Nazari et al. 

(2016) defined different thresholds based on 

connected components to distinguish between 

text and other map elements. This laborious 

task is certainly not adaptable to a large 

variance of maps. 

 

Figure 2: Overlaps between labels and other map 

elements are supposed to be a major challenge for 

automated text detection. 

These further drawbacks do not or rarely appear within 

our presented map but may be a general challenge for 

text detection: 

• Wide character spacing. Cartographic 

labeling principles indicate a smaller spacing 

between characters compared to words 

(Chiang and Knoblock, 2014; Yu et al., 2017). 

According to Strabo’s specification, the 

horizontal space between two characters must 

be smaller than the largest character so that 

they are connected to one word (Chiang et al., 

2016). This is not the case for e.g. 'Alter Wall' 

within the upper left part of our map subset 

illustrated in Fig. 1. 

• Extraordinarily curved labels. Strabo splits 

labels deviating substantially from a straight 

alignment into smaller parts in favor of an 

enhanced recognition of individual characters 

(Chiang et al., 2016). 

• Differing text sizes within a label. 

• Low graphical quality (Abdullah et al., 2015; 

Yu et al., 2017; Chiang et al., 2016). Efforts to 

emphasize and make use of the map’s whole 

RGB color range by linear contrast stretching 

(normalization) and global histogram 

equalization made only marginal 

improvements concerning the overall label 

detection rate (see (c) in Fig. 3 as well as 

Tab. 1). 

 

Figure 3: Detected text elements: true positives (blue) and false positives (purple). Strabo was applied to the original image 

subset (a), the combination of the original and the rotated input image through +45, +90, -45, and -90 degrees (b), and the 

combination of the original, rotated through +45, +90, -45, and -90 degrees, and enhanced (linear contrast stretching and 

global histogram equalization) input image (c). 
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Table 1. Quality of text detection by Strabo revealed by recall, precision, and f-score. The results are derived from the 

original, original + rotated (through +45°, +90°, -45°, -90°), as well as the original + rotated + enhanced (linear contrast 

stretching and global histogram equalization) input images. 

map (subset) 
number  

of pixels 

recalla precisionb f-scorec 

original map  →  original + rotated map  →  original + rotated + enhanced map 

as shown in Fig. 1 1081 x 881 41% → 58% → 66% 100% → 91% → 91% 58% → 71% → 77% 

subset of Fig. 1  468 x 380 34% → 56%    92% → 86%   50% → 68%   

complementary map 1056 x 794 37% → 70% 
  

76% → 78% 
  

50% → 74% 
  

a ������ =  
�	
� �
�������

�	
� �
������� � ����� ���������
 = percentage of correct detected text elements in respect to the total number of existing 

text elements 

b ��������� =  
�	
� �
�������

�	
� �
������� � ����� �
������� 
 = percentage of correct detected text elements in respect to the total number of de-

tected elements (Pouderoux et al., 2007) 

c � − ����� =  2 ∗
�	� ���
� ∗ 	� ���

�	� ���
� � 	� ���
 with 100% indicating perfect recall and precision 

The algorithm developed by Chiang and Knoblock 

(2014) frequently generates multiple bounding boxes 

for individual labels which rather represent an identical 

one. Consequently, those bounding boxes belonging to 

one label overlap each other. Figure 4 illustrates how 

this spatial relation can be used for merging the 

affected bounding boxes with the aim to effectively 

separate off each label from the input image hereafter. 

 

Figure 4: Strabo’s outputted bounding boxes need to be 

merged per label to effectively separate off them from the 

map. 

In view of the aforementioned causes, overlapping 

bounding boxes meeting at least one of the following 

criteria were unified in the order as listed within an 

iterative procedure: 

1. The overlapping area between two bounding 

boxes is larger than 50% of the smaller 

bounding box’ area (Fig. 5 (1)). 

2. The distance between the centroids of two 

overlapping bounding boxes is larger than 1.5 

times the overall average bounding box height 

and, at the same time, the difference between 

their rotation angle is less than 8 degrees 

(Fig. 5 (2)). 

To achieve the desired results, the input data was 

converted into a local, metric coordinate reference 

system before calculating each bounding box’ surface 

area. For criteria (1), the ratio of the overlapping area 

between two bounding boxes to the area of the smaller 

one was determined. The two considered polygons 

were unified into a single one for ratios of at least 50%. 

Preliminary testing showed that an overlap of 50% or 

more indicates an incorrect double detection by the 

algorithm and therefore an identical label. This 

procedure was iterated until all ratios between two 

bounding boxes were less than 50%. 

Using further Python libraries such as GeoPandas, we 

were able to derive the coordinates of each bounding 

box’ centroid. NumPy’s mean() function helped us to 

determine the average of the two shortest side lengths 

over all bounding boxes which was assumed as their 

initial average height. In combination with their 

inclination provided by Strabo and normalized to a 

semicircle covering 0 to 180 degrees, these two 

variables could be used to find cases exceeding or 

falling below the thresholds defined from experience 

for criteria (2). Again, two bounding boxes were 

unified as long as they fulfilled the mentioned 

conditions.
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Figure 5: Criteria contributing to a unification of two bounding boxes: overlapping area >50% of the smaller bounding box’ 

area (1) and centroids’ distance >1.5 times the overall average bounding box height and rotation angle difference <8° (2).

As a result, each label represented on the input raster 

map and being localized by Strabo comprised exactly 

one appropriate bounding box. By applying ArcPy, 

Esri’s Python library for spatial data processing, the 

original input image could therefore be extracted by 

one of these bounding boxes respectively to generate 

individual text image areas. Being exported as 

individual raster files, they were rotated through their 

averaged rotation angle calculated on the basis of their 

original bounding boxes. This procedure was 

implemented to considerably improve the 

preconditions for the subsequent text recognition 

(Chiang et al., 2014). 

3.4 Text recognition 

Available text recognition approaches do rarely achieve 

satisfactory results regarding raster maps so that 

additional steps become necessary (Milleville et al., 

2020). With the help of a preliminary text detection an 

early knowledge about the exact location of text can 

contribute to systematically read content from input 

images such as historical maps. Combining text 

detection and recognition in an end-to-end approach 

not only improves recognition rates but also reduces 

computing time by focusing on text image areas solely 

(Ye and Doermann, 2015; Weinman et al., 2019). 

To convert the detected text image regions into a 

machine-readable format, resp. characters and strings, 

we used the free and open source engine Tesseract 

OCR2 (version 4.1.1) which is considered as one of the 

most accurate tools for optical character recognition 

(OCR) at present (van Strien, 2020). As all labels 

within the utilized map subset are in German, this 

language specification was defined for an improved 

automatic text recognition by Tesseract. Additionally, 

each input image should be considered as a single 

word. The workflow shown in Fig. A2 (see Appendix) 

                                                           
2 Weil et al. (2020) 

starts with an exemplary output from Tesseract for 

further processing, the string 'Fisch'. 

3.5 String similarity 

Given a character string for each detected text image 

area, our aim was to roughly spatially assign them to 

the input map (Fig. 1). To strengthen the recognition 

confidence by retaining the one text string turned right 

way up, Chiang and Knoblock (2013) suggest a 

juxtaposition of recognized and suspicious characters. 

However, neither this methodology nor a comparison 

of similar strings between different maps (such as 

recommended by Chiang and Knoblock (2014)) 

considers an appropriate ground truth. In practice, OCR 

results are rarely precisely identical with a potential 

ground truth. To attain real names of streets and places, 

further reference values are necessary. A great variety 

of existing approaches (e.g. Simon et al. (2014); 

Weinman et al. (2019)) are based on the comparison 

with a regional gazetteer. This is, in some cases, 

available – and therefore efficiently – only for small-

scale maps. We take one step further by comparing all 

recognized strings to an available database 3  holding 

names of current streets and places within the region 

covered by our map example in Fig. 1, the city center 

of Hamburg. As certain street names designate e.g. 

historical events or circumstances and therefore are 

subject to only minor changes over long periods, this 

local geodataset could be used as a comparable 

similarity measure (Hanke, 2014). 

To effectively measure the similarity between two 

strings, namely an OCR output stringh indicating a 

historical street or place on the one hand and a list of 

current street names (stringc) on the other hand, their 

Levenshtein Distance was defined. We were able to 

identify street names which are likely to be identical in 

                                                           
3  Freie und Hansestadt Hamburg, Behörde für 

Wirtschaft, Verkehr und Innovation (2020) 
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historical and recent maps by applying two different 

methodologies with the help of the python library 

fuzzywuzzy, which implements the Levenshtein 

algorithm: 

• ratio computes the number of character edits 

(adding, erasing, and replacing) which have to 

be done to transform stringh to stringc (Yu 

et al., 2017) and 

• partial ratio computes the similarity of the 

shorter substring stringh within parts of the 

longer stringc. 

Here, both measures appeared to be of equal value as 

both individual characters might be recognized 

incorrectly (→ ratio) and only parts of strings might be 

identified (→ partial ratio). 

The output values are defined in percentage ranging 

from 0 (no similarity) to 100 (identical). Figure A2 (see 

Appendix) gives several output examples including 

their percentage value of accordance for the input 

stringh 'Fisch'. A low score can be an indication of 

either a poor OCR outcome or a great difference 

between the historical and current street names stringh 

and stringc. Additional rules being based on various 

own findings were defined to exclude each stringh from 

further processing having few (<75%) or multiple 

identical matching values for stringc. On the basis of a 

defined threshold of 75%, the street names matching 

those stringh were continued to be used as control 

points for a subsequent georeferencing. 

3.6 Approximate georeferencing 

The dataset3 used for allocating current street names 

helped to perform an initial rough georeferencing of the 

historical map subset. Since each street within the 

mentioned geodataset consists of a variable number of 

linestrings, we defined different rules to find their 

centroids each representing a street’s approximate 

point-like location: When consisting of only one 

linestring, the point at half-length was assumed to 

represent the street’s centroid. For those streets 

comprising two linestrings, the interpolated point at 

half-length over both lines was specified as the 

corresponding centroid. For each street being 

represented by more than two lines, we built the 

centroid of their common rectangular bounding box. 

As the bottom section of Fig. A2 (see Appendix) 

illustrates, these labelled points served as control points 

for a georeferencing via affine transformation. 

4 Experimental results and evaluation 

This section points out the results of our methodology 

as presented in Sect. 3. We primarily conducted tests 

with the map subset shown in Fig. 1 and complemented 

other input as necessary. 

4.1 Text detection 

For the generation of bounding boxes each holding an 

individual text image area Strabo works best with RGB 

input images. Own tests confirmed the findings of 

other authors that there is no difference between 

lossless PNG and JPEG with smallest possible 

compression (at least 93% image quality (Mansurov, 

2018)) using as an input data format (Milleville et al., 

2020; Li et al., 2019). Our results in Tab. 1 reveal that 

the increase of the label detection rate was not as stark 

as that of Wilson (2020) when expanding an image’s 

spatial extent. 

Various challenges arose when working with Strabo. 

Due to their frequently similar visual characteristics, 

the algorithm does not differ between text and similar 

graphical elements such as textures or edges of map 

objects, particularly between those being of the same 

color. Suggested solutions to separate between 

isochromatic text and lines, such as the inclusion of 

connected components, may cause negative effects 

regarding the detection rate (Chiang and Knoblock, 

2014). 

To facilitate further processes – in particular text 

recognition and string similarity – the number of 

detected labels could be increased by own adaptions 

which were already presented in Sect. 3.3. As shown in 

Fig. 3 (b), rotating the input image lead to a perceptible 

increase in the number of correctly found text 

elements. In reference to a ground truth, the recall 

could be improved from 41% regarding the original 

map to 58% after combining it with rotated images 

through +45, +90, -45, and -90 degrees respectively 

(Pouderoux et al., 2007). Table 1 shows that 

examinations with further map subsets revealed an 

improved recall by up to 50% through this procedure. 

Initial image enhancements such as linear contrast 

stretching and global histogram equalization could 

contribute once more to an improved recall of 66% 

when regarding Fig. 1. A slight increase of elements 

falsely detected as text (false positives) and therefore a 

decrease in the overall precision can be observed in 

Fig. 3 (c) as well as Tab. 1. As these did not affect the 

averaged accuracy measure f-score to a high degree, 
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we used the combined input consisting of original, 

rotated, and enhanced images for further processing. 

An accurate localization of all text areas is not 

necessary since the final affine transformation requires 

only three ground control points. 

4.2 Text recognition 

Utilizing the derived and unified bounding boxes, the 

occurrence of text elements within the map could 

precisely be located. This enabled an improved reading 

of labels from the input map, the text recognition. As 

can be seen from Fig. A1 in Appendix, our workflow 

includes an extraction of all text image areas before 

bringing those to a horizontal orientation. Our 

experiences revealed that Tesseract is incapable of 

reading text being rotated 10 degrees and more. 

Recognizing rotated text is an ongoing and still not 

solved challenge in OCR (Ye and Doermann, 2015; Yu 

et al., 2017). However, map labels within the bounding 

boxes might be oriented in two directions. Firstly, right 

side up in a readable form and secondly, upside down, 

rotated 180 degrees. The cropped text image areas were 

consequently rotated through the rotation angle of their 

associated bounding boxes on the one hand and 

additional 180 degrees on the other hand. 

Table 2. Outputs from Strabo and Tesseract OCR as well as their Levenshtein Distance to current street names3 calculated 

with the help of the fuzzywuzzy library. 

Detected label 

by Strabo 

Rotation 

angle 

Rotated by 

rotation angle 

Recognized string  

by Tesseract OCR 

(stringh) 

Ground truth string 

from current street 

names3 (stringc) 

Average 

Levenshtein 

Distance  

 

179° no >Speersort| Speersort 100.0% 

 

1° no Catharıineıl Katharinenfleet 33.5% 

 

179° no I Beichei Siebeneichen 33.5% 

 

178° no chopenstehl Schopenstehl 98.0 % 

 

3° no Nicola; Nieland 31.0% 

 

167° 
no „ame - 0.0% 

yes HTollandısche Holländische Reihe 72.5% 

 

14° 
no ren Wöhren, Cremon 0.0% 

yes ud Hude 33.5% 

 

54° 

no AN - 0.0% 

yes | MARKT Marktweg 33.5% 

 

55° 

no N - 0.0% 

yes Adolphs Br. Adolphsbrücke 84.0% 

 

88° 

no - - - 

yes klopfen markt Hopfenmarkt 87.0% 

 

An appropriate input data pool for an optical character 

recognition by Tesseract OCR was hereby created. As 

the map’s original lossless PNG format performed poor 

for text recognition, all files were transferred in TIFF 

and RGB color mode. Further testing with grayscale 

and binary input images did not show any 

improvement. 

Regarding Tesseract’s output (examples shown in 

Tab. 2), a reasonable number of text strings could be 
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recognized distributed over the entire map. Only minor 

deviations from a manually prepared ground truth 

could be identified for horizontal labels. Similar results 

were also given for further tested input maps. Although 

Tesseract generally assumes a clean, plain input image 

and its model is trained on specific typefaces, 

interfering artifacts such as parts of lines, textures, and 

other map elements did not considerably deteriorate the 

outcomes (Rosebrock, 2018b). 

4.3 Matching to current data 

Several concurring names could be identified between 

historical and current streets and places. After applying 

fuzzywuzzy’s (partial) ratio the previously derived 

centroids (see Sect. 3.3) of Tesseract’s output on the 

one hand and the local geodataset3 including current 

street names on the other hand could be matched in a 

satisfactory manner for our map example (Fig. 1). As 

seen in Tab. 2, the average Levenshtein Distance of 

matching strings such as Adolphsbrücke, Hopfenmarkt, 

Schopenstehl, or Speersort exceeded our defined 

threshold of 75%. We could continue to use those 

labels having high matching rates and a good 

distribution over the raster map. In combination with 

their centroids they served as reference points for a 

subsequent allocation of all remaining streets as well as 

for an initial rough georeferencing of the historical 

map. By assigning street labels to specific locations 

within the map, the meaning and context (semantics) of 

those could be specified (see Fig. 6). 

 

Figure 6: Current names of streets and places spatially 

assigned to the georeferenced historical map. 

5 Conclusions and outlook 

This study can be understood as a proof of concept for 

an automated end-to-end workflow to extract labels 

from large-scale historical maps. Our findings that 

detection and recognition rates are generally low 

(<80% and <60% on average respectively) are broadly 

consistent with Weinman et al. (2019) and point out 

necessary improvements for machine learning 

approaches (Ye and Doermann, 2015). By combining 

tools addressing text detection, recognition, and string 

similarity with further adjustments we were able to not 

only increase the overall recognition rate but also to 

provide a base for useful ancillary information such as 

the names of streets and places. This may be 

considered a promising aspect of searchable and 

analyzable historical maps. Furthermore, a 

georeferencing, which is frequently lacking for 

historical maps, could roughly be made. For best 

results, those labels having highest similarity rates and 

an appropriate scattering over the map should be 

considered as reference points. A great benefit may be 

a resulting facilitated comparison between different 

maps such as between historical and current ones. 

We demonstrated the possibility of transferring the 

suggested approach to a variety of maps due to 

omitting individual adjustments. Nevertheless, 

disturbing factors such as interfering artifacts from 

building corners, textures, or map grids may occur and 

can therefore still be challenging for different maps. 

Further testing with additional maps might be helpful 

to specify and minimize the sources of disturbance 

more precisely. 

To improve the overall accuracy of the presented 

approach, we suggest connecting identified single 

words to complete map labels. This may be achieved 

by looking closely at the adjacency and similarity of 

rotation angles of detected text image areas. Also, map 

labels covering multiple lines should be considered. 

The certainty of true positives may therefore be 

increased for all substeps within our comprehensive 

approach. 

Future research might continue to use our results to 

label further map features and to assign those to their 

related geometries. The identification of geometries 

such as from streets, buildings, or waterbodies may be 

facilitated by a preceding elimination of all detected 

labels within a map. Segmenting and classifying map 

objects based on their different properties could 

support the establishment of ancillary, informative 

databases and therefore enable the analyzability of 

historical maps. With this kind of feature matching, not 

only further map objects might be identified but also a 

more intuitive comparison between historical and 

current maps would become possible. 
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6 Data and software availability 

All research data and applications produced and 

applied within this publication can be found at 

https://doi.org/10.5281/zenodo.4721174 (Schlegel, 

2021). The repository is structured following Sect. 3 of 

this paper. 

The results were generated using QGIS Desktop 3.16.0 

(approximate georeferencing, Sect. 3.6), the command 

prompt in Windows 10 OS (Tesseract OCR, Sect. 3.4), 

the Linux (Ubuntu 18.04) command line via Windows-

Subsystem for Linux (Strabo, Sect. 3.2), as well as 

several Jupyter Notebooks (additional adjustments, 

Sect. 3.3 and string similarity, Sect. 3.5) written in 

Python. These scripts are available under the GNU 

GPLv3 license. 

The workflow underlying this paper was partially 

reproduced by an independent reviewer during the 

AGILE reproducibility review and a reproducibility 

report was published at 

https://doi.org/10.17605/osf.io/anv9r. 
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Appendix 

 

Figure A1: Workflow from label detection to recognition for a map subset including interposed further adjustments. 
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Figure A2: Workflow for matching historical to similar current street names with the aim to perform a rough georeferencing. 
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