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Abstract. This paper explores the role deep 

convolutional neural networks play in automated 

extraction of linear structures using semantic 

segmentation techniques in Digital Terrain Models 

(DTMs). DTM is a regularly gridded raster created from 

laser scanning point clouds and represents elevations of 

the bare earth surface with respect to a reference. Recent 

advances in Deep Learning (DL) have made it possible 

to explore the use of semantic segmentation for 

detection of terrain structures in DTMs. This research 

examines two novel and practical deep convolutional 

neural network architectures i.e. an encoder-decoder 

network named as SegNet and the recent state-of-the-art 

high-resolution network (HRNet). This paper initially 

focuses on the pixel-wise binary classification in order 

to validate the applicability of the proposed approaches. 

The networks are trained to distinguish between points 

belonging to linear structures and those belonging to 

background. In the second step, multi-class 

segmentation is carried out on the same DTM dataset. 

The model is trained to not only detect a linear feature, 

but also to categorize it as one of the classes: hollow 

ways, roads, forest paths, historical paths, and streams. 

Results of the experiment in addition to the quantitative 

and qualitative analysis show the applicability of deep 

neural networks for detection of terrain structures in 

DTMs. From the deep learning models utilized, HRNet 

gives better results. 

Keywords: Semantic Segmentation, Digital Terrain 

Models, GIS: Geographic Information Systems, Deep 

Learning 

1 Introduction 

The extraction of information, including linear 

structures, plays an important role in a wide range of 

disciplines where topographic features are used in 

spatial analysis, e.g. hydrological applications and 

archaeological applications. Remote sensing techniques 

such as Airborne Laser Scanning (ALS) are used to 

collect 3D data from large areas simply by measuring 

the range and reflectivity of objects on their surface. 

ALS is often referred to as light detection and ranging 

(LIDAR). Data of this type are stored as point clouds, in 

order to leverage such data to identify structures on the 

terrain, a rasterized product named DTM is used. DTM 

is a filtered version of ALS data which preserves the 

information on the terrain points, i.e. it contains 

elevation information and surface characteristics such as 

ditches, forest paths, hollow ways, path ways, roads, etc. 

Usually some of the most meaningful features needed to 

be extracted from DTM data are slope, aspect, surface 

curvature, roughness of the terrain and distance from 

water reservoirs (bodies). Traditionally, within the field 

of feature extraction many deterministic algorithms 

have been designed to identify specific objects or extract 

specific linear features leveraging ALS data. Methods 

used for line extraction from DTMs can be divided into 

two categories: Physical water flow simulation-based 

methods (O’Callaghan and Mark, 1984, Jenson and 

Domingue, 1988, Quinn et al., 1991, Tarboton, 1997) 

and geometrical morphological analysis-based methods 

(Chang et al., 1998, Gülgen and Gökgöz, 2004, Zhang 

et al., 2013, Zou and Weng, 2017, Peucker and Douglas, 

1975) as mentioned in (Tsai, 2019). The former conduct 

running water simulation on terrain surface and the 

latter, geometric approach identify feature candidates 

for extracting terrain feature lines. 

Easier collection and storage of huge dataset and recent 

advance in hardware have given researchers the 

opportunity to exploit Machine Learning (ML) 

techniques. Initially, classical ML algorithms were used 

for the task of detecting and identifying objects in DTM 

data. Hitherto, a great number of ML algorithms has 

been published in the literature for the sole purpose of 

detecting and identifying objects in products of ALS 

data. The probability of palustrine wetland in digital 

elevation data were predicted by (Maxwell et al., 2016) 

using Random Forest (RF), moreover (Naghibi et al., 
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2015) used Boosted Regression Tree (BRT), 

Classification and Regression Tree (CART) and RF in 

digital elevation data for modeling and mapping of 

groundwater spring potential. Support Vector Machines 

(SVMs) and RF are also exploited for detection of 

forested landslide in DTM data (Li et al., 2015, Paw 

luszek-Filipiak and Borkowski, 2016). However, the 

performance of the most ML algorithm depends solely 

on how accurately the features are extracted and 

identified by the experts. The need for an expert in order 

to select, extract and hand engineer the features, from 

the raw data, makes the process rather costly. With such 

challenges, requirements and vast amount of data 

acquired daily, the need for a much efficient method has 

been addressed by researchers all over the world. 

Recently, a subfield of ML referred to as Deep Learning 

(DL) has come into play and shown improved 

performance when compared to the classical ML 

methods in many applications such as image 

classification, localization and detection, speech 

recognition, machine translation and many advanced 

assistance systems. The advantage of using DL is that it 

doesn’t require a priori extraction of features i.e. learns 

and extracts features automatically from the dataset. 

However, training an accurate and efficient DL model 

requires a huge amount of data, in order to prevent the 

model from overfitting (i.e. to prevent model for 

memorizing the training data). In the literature, many 

datasets are made public. Some benchmark image 

datasets used for computer vision application such as, 

medical imaging technology, face recognition and 

autonomous driving are Labelme (a large dataset of 

annotated images) (Russell et al., 2008), ImageNet 

(Deng et al., 2009), Cityscape (Cordts et al., 2016), LIP 

(annotated human images) (Gong et al., 2017), 

PASCAL-Context (Mottaghi et al., 2014), and many 

more. 

The main objective of this study is to exploit novel state-

of-the-art techniques in deep learning for Semantic 

Segmentation, in order to extract linear structures from 

ALS data, e.g. DTM. Following the preprocessing 

approach proposed by (Kazimi et al., 2019b), SegNet 

(Badrinarayanan et al., 2017a, Badrinarayanan et al., 

2017b) and HRNet (Ke et al., 2019) architectures are 

examined for a pixel-wise binary classification in order 

to validate the applicability of the proposed approaches. 

In the first step, the networks are trained to distinguish 

between points associated to the linear structures and 

those of background. In the second step, multi-class 

segmentation is carried out on the same DTM dataset, 

where the model is trained to detect and categorize the 

linear structures into one of the classes: hollow ways, 

roads, forest paths, historical paths, and streams. 

The rest of the paper is organized as follows. Section 2 

outlines related works. Section 3 briefly introduce the 

proposed methods. Section 4 discusses the architecture 

and hyperparameters of the model and describes the 

properties of the dataset used in this paper.  Section 5 

shows the results of the experiment, and the quantitative 

and qualitative analysis of the results. Section 6 gives 

details of Data and Software Availability (DASA), and 

finally Section 7 concludes this paper and lists possible 

future research in this direction. 

2 Related Work 

Traditionally, in the field of Geographical Information 

Systems (GIS) many tasks such as, extraction of linear 

structures (features), skeleton lines (ridge and valley 

lines) and terrain synthesis (O’Callaghan and Mark, 

1984, Jenson and Domingue, 1988, Chang et al., 1998, 

Zhang et al., 2013) have been conducted using 

deterministic algorithms. Among them, DTM data are 

used by mainstream methods such as physical water 

flow simulation and geometric approaches (Gülgen and 

Gökgöz, 2004). The former method has many variations 

e.g. single flow direction or D8 approach (O’Callaghan 

and Mark, 1984) and multiple flow direction approach, 

D-infinity approach which are incorporated in many GIS 

softwares (Quinn et al., 1991, Tarboton, 1997). 

Although these algorithms have been used by many 

researchers, they have many drawbacks and 

disadvantages. Expert knowledge of the topic is always 

needed, when conducting research and studies using 

these traditional methods. Moreover, it has become 

impossible to catch up with the processing of the data. 

These huge sets of data and recent hardware advances 

have posed new opportunities for the researchers to 

utilize the state-of-the-art ML and DL methods. 

In the recent time, DL has proven to be successful in 

many tasks related to the computer vision with 

applications in search engines, image understanding, 

drones and self-driving cars among others. Core to these 

applications are image classification, localization, 

detection, semantic segmentation and instance 

segmentation. Different types of model architecture 

have been proposed for DL, including Feed-forward 

Neural Networks (FNNs), Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs). As the most established architecture among 

various DL methods, CNNs has recently become a 
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dominant method in computer vision. There are many 

prominent DL architectures that make use of CNNs. The 

most well-known examples are: 

 LeNet. The first successful applications of 

CNN developed by LeCun et al. (LeCun et al., 

1990) and was used to read zip codes, digits, 

etc. 

 AlexNet. The first work that made CNN 

popular in computer vision and was developed 

by Krizhevsky et al. (Krizhevsky et al., 2017). 

 GoogLeNet. The winner of ILSVRC 2014, 

developed by Szegedy et al. (Szegedy et al., 

2015) from Google. Their development of an 

Inception Module dramatically reduced the 

number of Parameters in the network (4M 

when compared to AlexNet with 60M) 

 ResNet. Residual Networks, the winner of 

ILSVRC 2015 was developed by Kaiming He 

et al. (He et al., 2015) and are one of the most 

commonly used CNN models. The architecture 

features special skip connections and a heavy 

use of batch normalization, at the end of the 

network it is also missing the fully connected 

layer. 

 Xception. Inspired by Inception, and 

developed by François Chollet (Chollet, 2016), 

this architecture significantly outperforms 

Inception V3 on larger image classification 

dataset. 

In image segmentation, the current state-of-the-art 

results are also obtained using the CNN architectures 

such as, Fully Convolutional Neural Network (FCN) 

(Long et al., 2015), UNet (Ronneberger et al., 2015), 

DeepLabv1 (Chen et al., 2018) and SegNet 

(Badrinarayanan et al., 2017a, Badrinarayanan et al., 

2017b) among others. Not long ago, high resolution 

network (HRNet) (Sun et al., 2019) was proposed that 

maintains high resolution throughout the whole process 

and has proved to be superior for tasks such as object 

detection and semantic segmentation (Sun et al., 2019, 

Wang et al., 2020). 

In the field of remote sensing, DL has also gained 

popularity in pattern recognition from ALS raster data. 

In recent times, several CNN-based architectures were 

proposed in the literature (Marmanis et al., 2015, 

Marmanis et al., 2016, Hu and Yuan, 2016, Rizaldy 

et al., 2018, Politz et al., 2018, Kazimi et al., 2018, 

Torres et al., 2018, Kazimi et al., 2019b, Du et al., 2019, 

Kazimi et al., 2020), in which Digital Elevation Model 

(DEM) were used as input data instead of the usual 

natural images. Marmanis et al. (Marmanis et al., 2015) 

proposed a deep classification model for detecting 

objects above-ground using DEM as input data. Their 

developed network is capable of differentiating between 

high standing structures e.g. trees and high-rise 

buildings. Further developing their work using networks 

pre-trained on regular images, they concluded that 

coupling DEM data with a real image can produce 

accurate segmentation masks (Marmanis et al., 2016). 

Hu et al. (Hu and Yuan, 2016) also developed an 

architecture based on CNNs to extract relevant data in 

order to produce DTMs from ALS data. To determine 

multi-class segmentation Rizaldy et al. (Rizaldy et al., 

2018) applied a CNN on loosely processed DTM data. 

Not long ago, Torres et al. (Torres et al., 2018) applied 

DL in DEM data to identify mountain summits. For 

further applications of CNN using ALS data, the 

interested reader is referred to recent works in (Politz 

et al., 2018) and Kazimi et al. (Kazimi et al., 2018, 

Kazimi et al., 2019b, Kazimi et al., 2019a, Kazimi et al., 

2020). In order to detect objects and their location in 

archaeological sites, a two-stage approach were 

proposed in (Kazimi et al., 2018). In the first stage they 

developed and trained multiple classifiers with different 

input sizes and in the second stage they use a sliding 

window approach to scan large DTMs with each 

classifier and merge their outputs to generate a heat map 

for each class. Following their work in (Kazimi et al., 

2019b), they generated a segmentation mask directly 

from labeled DTM data using an encoder-decoder model 

named DL4DTM. Their proposed model is a modified 

version of DeepLabv3+, in which the output size is 

changed to be smaller than that of the input, moreover 

their proposed preprocessing approach is using a min-

max normalization on each input in order to successfully 

process DTM data. It is worth noting that there also exist 

many publications which modify and combine different 

networks for a better performance and less 

computational effort, for instance, to detect structure in  
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Figure 1: An illustration of a CNN architecture termed SegNet for image segmentation. Figure is adapted from 

(Badrinarayanan et al., 2017a). 

 

Figure #2: An illustration of HRNet. There are 4 stages. The 1st stage consists of high resolution convolutions and the rest 

repeats two-, three- and four-resolution blocks, respectively. Figure is adapted from (Sun et al., 2019)

DEM data Kazimi et al. (Kazimi et al., 2020) recently 

proposed a Multi-Modal High Resolution network 

named MM-HR which is based on HRNet (Ke et al., 

2019) and multi-modal deep learning approach (MM) 

(Du et al., 2019). Their proposed architecture with fewer 

parameter outperformed the MM architecture on the 

dataset of archaeological mining structures from Harz. 

In this project, based on literature analysis and our 

preliminary experiments with an intent to contribute to 

the field of remote sensing following recent works in 

(Kazimi et al., 2019b, Kazimi et al., 2020), we explore 

the use of semantic segmentation by doing experiments 

using two different CNN architectures, an encoder-

decoder network named SegNet (Badrinarayanan et al., 

2017a), and a high resolution network called HRNet 

(Sun et al., 2019) for the sole purpose of extraction of 

linear structures in DTMs. 

3 Method 

The main contribution of this research is proposing and 

confirming the use and efficiency of state-of-the-art 

models referred to as SegNet (Badrinarayanan et al., 

2017) and HRNet (Sun et al., 2019). Additionally, we 

have also conducted a classical approach using ArcGIS, 

in order to create a ground for comparison with the 

proposed methods and also give a glimpse of what it 

takes to conduct these tasks using a classical method. 

Details of the proposed classical method and deep 

learning models are given in the following sections.  

3.1 Classical Approach 

Classical approaches leverage deterministic algorithms, 

to extract linear structures from ALS data such as DEM 

and DTM. In this research we are using ArcGIS spatial 

analyst tools for conducting experiments on our dataset. 

Following steps are necessary, in order to extract 

meaningful results from the DTM.  

 Run the Fill tool - the Fill tool removes the 

imperfections from DTM data by filling the 

sinks in a surface raster. 

 Run the Flow direction tool - this tool creates 

a raster flow direction from each cell to the 

steepest downslope neighbor. 

 Run the Flow accumulation tool - it 

calculates accumulated flow as the 

accumulated weight of all cells. 

After a successful execution of the aforementioned tools 

on the DTM data, the obtained results can be 

manipulated for a better visualization, the color of the 

accumulation lines can be changed. Furthermore, if we 

want to have polylines then another tool called, Raster 

to Polyline tool needs to be executed. 

Please note that this process identifies fluvial structures 

in a DTM, therefor we expect a good performance of the 
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operators with respect to those objects – as opposed to 

other objects such as roads. 

3.2 Encoder-Decoder Architecture 

As an encoder-decoder architecture, a novel and 

practical deep fully convolutional neural network 

architecture for semantic pixel-wise segmentation 

named SegNet (Badrinarayanan et al., 2017) is chosen. 

An encoder-decoder architecture is typically used to 

improve generality and computational efficiency. In 

such architectures, an encoder compresses the data into 

a highly generalizable state and decoder upsamples it in 

order to produce a segmentation mask (output of the 

model) of the same size as that of the input. The function 

of downsampling is to not only reduce the size of the 

output but also to reduce the number of parameters to be 

calculated at each successive convolutional layer. As the 

most common downsampling technique, max-pooling 

extracts the maximum values from the portions of the 

image and saves its location. To obtain the high 

resolution segmentation mask, the output must be 

upsampled, and this can be done using a decoder. In 

order to achieve this upsampling a decoder uses a 

combination of max-unpooling, residual connections 

and convolutions. The combination allows the network 

to maintain information from multiple stages throughout 

upsampling process. The previously memorized 

locations or indices of the corresponding feature map is 

then used by decoder in order to upsample its input 

feature map. 

3.2.1 SegNet 

SegNet (Badrinarayanan et al., 2017) is a fully 

convolutional neural network that consists of two 

distinct parts. The first part is convolution and 

downsampling (encoding) and the second part is the 

convolution and upsampling (decoding). These parts 

namely, convolution, downsampling and upsampling 

are the most important parts of CNN for semantic 

segmentation task. An illustration of this architecture is 

depicted in Fig. 1, in which it is shown that each encoder 

layer has a corresponding decoder layer. In simple 

words, SegNet first downsamples the image by an 

encoder network and then upsamples it by a decoder 

network. The output of the final decoder is then fed into 

a multi-class Softmax classifier in order to generate 

class probabilities for each pixel independently. The 

encoder part of this network has 13 Convolutional layers 

and hence the decoder part also has 13 layers. The fully 

connected layer is discarded for the sole purpose of 

retaining high resolution feature maps at the deepest 

encoder output. This in fact results in a significant 

reduction of parameters in the SegNet encoder network 

when compared with other architectures. Each layer in 

the encoder network performs convolution with a filter 

bank to generate a set of feature maps which are then 

batch normalized. After normalization an element-wise 

rectified linear unit (ReLU) is used. Following that a 

max-pooling with a 2 × 2  window and stride 2  is 

performed, thus the resulting output is sub-sampled by a 

factor of 2.  

3.3 High Resolution Network (HRNet) 

HRNet, or High Resolution Network, is a general 

purpose convolutional neural network which is 

essentially considered for position-sensitive vision 

problems, e.g. human pose estimation, object detection 

and semantic segmentation. Unlike existing state-of-the-

art frameworks, which recover high resolution 

representations from low resolution representations 

outputted by a network (e.g. ResNet (He et al., 2015)) 

and optionally intermediate medium-resolution 

representations, e.g. SegNet (Badrinarayanan et al., 

2017a, Badrinarayanan et al., 2017b), HRNet maintains 

high resolution representation through the whole 

process. This can be done by connecting high to low 

resolution convolution streams in parallel and by 

repeatedly exchanging the information across parallel 

convolutions. Hence, the resulting representation is 

semantically richer and spatially more precise. High 

resolution representation was initially developed for 

human pose estimation (Sun et al., 2019), and soon due 

to their state-of-the-art performance, it became popular 

in many applications including semantic segmentation 

(Wang et al., 2020, Ke et al., 2019). In semantic 

segmentation, the proposed HRNet (Ke et al., 2019) has 

achieved state-of-the-art results with similar model sizes 

and less computational effort on many different datasets 

(e.g. PASCAL Context, Cityscapes and LIP). 

The architecture of HRNet is depicted in Fig. 2. It uses 

four stages, where the first stage consists of high 

resolution convolutions and the remaining stages are 

formed by repeating modularized multi-resolution 

blocks. This block consists of a multi-resolution group 

convolution and a multi-resolution convolution as 

illustrated in Fig. 3. 

AGILE: GIScience Series, 2, 11, 2021 | https://doi.org/10.5194/agile-giss-2-11-2021 5 of 14



 

Figure 3: Multi-resolution block: (a) multi-resolution 

group convolution and (b) multi-resolution convolution. 

Figure is adapted from (Sun et al., 2019). 

In semantic segmentation this architecture was used on 

two different datasets (Pascal Context and Cityscapes). 

To measure their performance, the mean of class-wise 

intersection over union (mIoU) were adopted as the 

evaluation metric.  

3.4 Models for Extraction of Linear Features 

The complexity of DTM data are relatively low when 

compared with other image data which contain complex 

features and patterns. Therefore, deliberate 

modifications to the proposed complex models such as 

SegNet (Badrinarayanan et al., 2017) and HRNet (Sun 

et al., 2019) are performed. These modifications are 

necessary since these models are designed to generate 

complex segmentation masks and are probably more 

complex and may result to a lengthy training time and 

other issues such as overfitting. Hence, smaller versions 

of the models are used. Our first model, SegNet as stated 

before is consisted of many conv-blocks and each block 

has many layers, each layer is consisted of a Conv, batch 

normalization and ReLU see Fig. 1. In this paper, we 

keep only one such layer of each conv-block. On the 

other hand, for the 2nd model (HRNet), the employed 

modifications are rather simpler. We only reduced the 

number of blocks at each stage from four to two blocks 

only.  

4 Experiments 

In this section, we aim to use a simpler version of 

SegNet and HRNet, to do semantic segmentation on 

DTM data. The following sections give details of the 

model architecture, the dataset used, and the 

experimental setup for both cases, binary classification 

and multi-class segmentation.  

4.1 Binary Classification  

4.1.1 Dataset 

The DTM dataset used in the binary classification task 

is acquired from the Harz Region and has a resolution of 

0.5 meters per pixel. They are labeled into two different 

classes: background and linear features. Fig. 4 depicts a 

tile of training region. Each example has a size of 128 ×

128 and the entire dataset is then divided into training, 

validation and test subsets.  

 

  
(a) RGB (b) Ground-truth  

Figure 4: Binary Classification – A 128x128 pixel patch of 

training region where linear structures are colored blue 

and the background is black. 

4.1.2 Experimental Setup 

The architectures used in the binary classification task 

are SegNet (Badrinarayanan et al., 2017) and 

HRNet (Sun et al., 2019). Both models are trained and 

evaluated on the same dataset using the same settings. 

The models are trained with an input size of 128 × 128 

for 50 epochs and a batch size of 20. As a loss function, 

binary cross-entropy is chosen, where it is then 

minimized using an optimizer called Adam (Kingma, 

Ba, 2014). The main metric for evaluation of the models 

performance is F1-Score. At each epoch the model is 

saved to disk, and the best model is then used to scan the 

test region and produce pixel-level predictions. The 

quantitative and qualitative analysis of the experiments 

are detailed in the results and discussion section. 

4.2 Multi Class Segmentation 

4.2.1 Dataset 

The objective of the second part of the paper is to 

categorize the detected linear features in DTMs as one 

of the classes: hollow ways, roads, forest paths, 

historical paths, streams and background. The dataset 

used here is the same data used in the binary 

classification task, however they are labelled differently. 

Fig. 5 illustrates the DTM and its ground truth label for 

linear features. Each color in the ground truth label 

represents a distinct class. Apart from the labelling, the 
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datasets undergo the same procedures as explained in 

the binary classification section. 

  
(a) RGB (b) Ground-truth 

 
(c) Ground-truth labels 

Figure 5: Multi-Class Segmentation – A portion of training 

region. 

4.2.2 Experimental Setup 

After a profound qualitative and quantitative analysis 

and experiments on the binary classification task of this 

paper which is given in Section results and discussion, it 

is decided to perform the multi-class segmentation task, 

using only the state-of-the-art high-resolution network 

(HRNet). The architecture of our network for multi-

class task is mostly identical to that of binary 

classification, however the only difference appears in 

the final layer. In the binary case, the final layer has a 

feature map size of 1 (128 × 128 × 1) with Sigmoid 

activation function for binary cross-entropy (BCE). On 

the other hand, for multi-class segmentation task, the 

final layer has a feature map with size equal to the 

number of categories which is 6 (128 × 128 × 6) with 

a Softmax activation function. The model is then trained 

to minimize categorical cross-entropy targeting the 

maximum categorical accuracy, and the final layer uses 

a Softmax function producing class probabilities for a 

given example (image). As for the evaluation of the 

performance of the model, metrics such as mIoU, F1-

score, accuracy among others are chosen.  

5. Results and Discussion 

In this section, we first conduct a binary classification 

task where we evaluate and compare the performances 

of both classical and deep learning methods on the same 

dataset. Additionally, a multi-class segmentation task 

using only high resolution network (HRNet) is also 

conducted, in order to categorize the detected linear 

features. 

5.1 Binary Classification 

As discussed in the previous sections of this project, the 

goal of binary-classification task is to detect the linear 

features from DTM data using both traditional and DL 

methods. As for classical method, ArcGIS software is 

used to extract some useful linear features. As for the 

proposed CNN architectures, we evaluate and compare 

the performances of both models: SegNet and HRNet on 

the same dataset. Moreover, their predictions on unseen 

data are also analyzed. The evaluation metrics of both 

models on the same dataset can be seen in Tab. 1, where 

different metrics such as accuracy, F1-score, precision 

and recall, are listed. 

 

Name SegNet HRNet 

Accuracy 0.8789 0.9065 

Precision 0.7678 0.8183 

Recall 0.6417 0.7353 

F1-Score 0.6983 𝟎. 𝟕𝟕𝟑𝟖 

Loss 0.3088 0.2582 

Table 1: Binary Classification -  Results of the evaluation 

metrics for both models on the same test region. 

For imbalanced classes such as this one where the 

distribution of examples in the training dataset across 

the classes are not equal i.e. number of background 

classes are orders of magnitude higher than pixels 

belonging to linear features, accuracy becomes an 

unreliable metric, to measure the model performance. 

For example, in the case of spam detection in emails, 

where there are 90 spam emails and 10 not-spam, if a 

model only predicts not-spam for any input email, 

without learning anything, an accuracy of 90% can be 

achieved, which is completely misleading. The 

quantitative analysis show not only that HRNet 

performs better than SegNet, but it also gives better 

results, as listed in Tab. 1. It is important to consider F1-

score as our main metric given we have a 128 × 128 

input tile where most of region has a value of zero. F1-

score is the harmonic mean of precision and recall. The 

greater the score, the better is the performance of the 

model. Thus high-resolution network (HRNet) with a 

score of  77%  outperforms the encoder-decoder 

architecture (SegNet). Additionally, we plot the results 

of training the two models in the experiments from 

Section 4 in Fig. 6. The trained models are then used to 

perform segmentation on large DTMs of test region 

using a sliding window approach. Example test regions, 

and the predictions by ArcGIS and our two models are 

shown in Fig. 7, Fig. 8 and Fig. 9. These regions and 

patches are extreme cases, cases where ground-truth is 

perfect but predictions are not and cases where ground-

truth is incomplete but predictions are better. 
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(a) Training Loss 

 
(b) Validation Loss 

Figure 6: Performance of SegNet and HRNet models on 

our dataset. 

Fig. 7 illustrates a larger portion of DTM used in the test 

region with overlay of linear features predicted by 

ArcGIS, SegNet and HRNet on RGB. It can be observed 

from our predictions when compared with the ground 

truth labels, that our models did a good job of extracting 

the major linear structures. Even though ArcGIS has 

created these linear structures in a more continuous and 

consistent manner, the size of linear structures predicted 

by HRNet is more precise compared to ArcGIS, 

additionally HRNet results are better than SegNet. 

Moreover, there are small discontinuous structures 

predicted by our models which are not covered in the 

ground-truth labels, this in fact shows that ground-truth 

labels are incomplete. These structures that are not 

covered in the ground-truth and are predicted by our 

models have tremendously affected the quantitative 

evaluation results. As expected the ArcGIS method tries 

to find fluvial patterns in the DTM – which does not 

necessarily correspond to our ground truth.  

 

  
(a) RGB (b) Ground-truth  

  
(c) ArcGIS (d) SegNet 

 
(e) HRNet 

Figure 7: Binary Classification – A large portion of test 

region. In #b blue color indicates the ground-truth 

labeling. 

  
(a) DTM (b) RGB 

\   

(c) Ground-truth (d) ArcGIS 

  
(e) SegNet (f) HRNet 

Figure 8: Binary Classification – A 128x128 pixel patch of 

test region. 

Individual patches are also evaluated and are shown in 

Fig. 8 and Fig. 9. In Fig. 8 it can be observed, HRNet 

has predicted the linear structures not only in a 

continuous manner but also accurately predicted their 

size. Nonetheless, there are regions where our models 

didn’t perform well, as a result some discontinuities in 
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the predicted segments can be seen see Fig. 9. Therefore, 

in the second part of this research which we will 

categorize these detected linear structures into classes, 

we use HRNet only. 

 

  
(a) DTM (b) RGB 

  
(c) Ground-truth (d) ArcGIS 

  
(e) SegNet (f) HRNet 

Figure 9: Binary Classification – A 128x128 pixel patch of 

test region. 

5.2 Multi Class Segmentation 

The goal of 2nd part of this paper is to categorize the 

detected linear features into classes: background, hollow 

way, old path, road, forest path and ditch. After a 

detailed study of the dataset and conducting experiments 

using binary labels, it was concluded that HRNet 

outperforms other approaches used in this research. 

Therefore, HRNet is employed in multi-class 

segmentation task. Tab. 2 lists the evaluation metrics of 

HRNet. The calculated mIoU score may not be very 

accurate measure of performance, given that most of our 

region has a value of zero. Therefore, F1-score is also 

computed to measure the performance. 

 

mIoU Precision Recall F1-Score Loss 

0.4174 0.8837 0.8963 0.8874 0.4201 

Table 2: Multi-class Segmentation -  Results of the 

evaluation metrics for high-resolution network. 

In general, it is important to figure out, on which classes 

our model performed well. For this purpose, evaluation 

metrics of individual class are listed in Tab. 3. Overall, 

our model has done well on class 0 and class 3 with an 

F1-score of around 95 and 87 percent, respectively. 

However, the model has poorly performed in 

categorizing the segments belonging to class 2 (old 

path). Results also show the model's performance 

decreases greatly on classes 4, 1 and 5 as well. 

 

Class label IoU Precision Recall F1-Score 

0 0.8952 0.9270 0.9630 0.9446 

1 0.2073 0.4009 0.3745 0.3873 

2 0.0324 0.3139 0.0373 0.0666 

3 0.7648 0.8797 0.8552 0.8673 

4 0.4453 0.6953 0.5580 0.6191 

5 0.1593 0.2697 0.2787 0.2741 

Table 3: Multi-class Segmentation -  Results of the 

evaluation metrics for individual classes. 

Additionally, training and validation loss along with the 

mean IoU for the test region predictions are shown in 

Fig. 10.  

In a practical level, to assess the performance of the 

model a visual analysis of the predictions is needed. 

Fig. 11 depicts the same region as illustrated in the 

binary classification task. However, here the extracted 

features are categorized into different classes using 

HRNet only. It can be observed that HRNet successfully 

differentiates between features of different classes. As 

pointed out in the Tab. 3, the models perform well only 

on two classes: background (2) and road (3), its 

performance is satisfactory on forest path (4) with an F1-

score of around 62%  and on classes: ditch (5) and 

hollow way (1) it is below 50% . Unfortunately, the 

model performed poorly on categorizing old path (2), its 

F1-score is below 7%, although, its precision is bigger 

than its recall, meaning that the model returns more 

relevant results than irrelevant ones. 

 

 

(a) Loss 
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(b) mIoU 

Figure 10: Performance of HRNet model on our dataset. 

(a) Loss during training and (b) Mean IOU  

For a thorough interpretation of the predicted results, 

here we take a closer look into some portion of our 

region of interest to see, how the model has performed 

on detecting and categorizing hollow ways, old paths 

and forest paths.  

Fig. 11 and Fig. 12 contain all the classes; it can be 

observed that our model has categorized accurately most 

of the detected linear structures into their respective 

class label. However, classes such as old path (2) and 

hollow way (1) are not categorized as such. The reason 

behind could be the similarity in the shape and position 

of these two classes and also the segments belonging to 

these classes in the ground-truth are thin in size.  

Therefore, given their size compared to other classes the 

model may suffice to learn other classes only. 

Additionally, in Fig. 12c, our model has detected many 

discontinuous linear structures in the middle of the 

region and labeled them as class hollow way. These 

segments are not covered in the ground-truth label and 

this can be one reason why our model has such low 

values in the quantitative evaluations.  

  Individual patches are also evaluated and our 

predictions are depicted in Fig. 13, Fig. 14 and Fig. 15.  

  
(a) RGB (b) Ground-truth  

 

 
(c) HRNet 

Figure 11: Multi-Class Segmentation – A large portion of 

test region. In #b blue color indicates the ground-truth 

labeling. 

 

  
(a) RGB (b) Ground-truth  

 

 
(c) HRNet 

Figure 12: Multi-Class Segmentation – A large portion of 

test region.  
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(a) DTM (b) RGB 

  
(c) Ground-truth (d) HRNet 

Figure 13: Multi-Class Segmentation – A 128x128 pixel 

patch of test region. 

 

  
(a) DTM (b) RGB 

  
(c) Ground-truth (d) HRNet 

Figure 14: Multi-Class Segmentation – A 128x128 pixel 

patch of test region. 

 

  
(a) DTM (b) RGB 

  
(c) Ground-truth (d) HRNet 

Figure 15: Multi-Class Segmentation – A 128x128 pixel 

patch of test region. 

 

5.3 Limitations 

Deep Learning approaches need huge number of dataset, 

to accurately learn and predict complicated problems. 

However, our initial objective in this project was not to 

achieve high accurate results, but to determine the 

efficiency of CNNs in detecting linear features from 

ALS point data or more precisely DTMs. To this end, 

we have confronted many challenges and limitations 

during this study, here a number of these limitations are 

discussed. Upon closer inspection of the dataset along 

with their ground truth labels, it can be observed that 

there are several regions or tiles in which the ground 

truth labels are missing, i.e. the dataset is incomplete. 

Another problem is that the ground truth labels are 

imprecise, the segments of the same class during 

labeling using ArcGIS software was buffered with the 

same length and this is not actually true for all the 

segments, since segments of the same class have 

different size. Since the DL approaches are identifying 

individual object pixels as patches, there is in general a 

lack of connectivity between them. This, however, is an 

important characteristic of linear features. Thus those 

results have to be post-processed (e.g. by connected 

compound analysis) in order to create consistent and 

connected objects. Last but not least, number of samples 

allocated to each classes are not equal i.e. we have and 

imbalanced class distribution. These aforementioned 

limitations tremendously affect the performance of our 

model in general. 

6. Data And Software Availability 

The training and validation data for this project is private 

to Lower Saxony State Office for Heritage. However, 

the source code for this experiments, the trained models 

and the test dataset to which the reported results 

correspond to are included in (Satari et al., 2021). The 

workflow underlying this paper was partially 

reproduced by an independent reviewer during the 

AGILE reproducibility review and a reproducibility 

report was published at 

https://doi.org/10.17605/osf.io/2sc7g.  

7. Conclusion and Outlook 

In this research, deep learning techniques were used to 

conduct experiments on DTM data acquired from the 

Harz region in Lower Saxony, in order to detect and 

categorize their linear structures or features. The neural 

network architectures for semantic segmentation 
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examined in this project are an encoder-decoder network 

named as SegNet and High Resolution Network 

(HRNet). Initially, a binary classification task was 

conducted, in which the networks were trained to 

distinguish between points belonging to linear structures 

and the background. This task was done not only to 

validate the applicability of the proposed architectures 

but also to identify the architecture with better overall 

performance. As a result, in the second part of this 

project, HRNet was chosen for multi-class segmentation 

task. The objective of this part of the project beside 

detection of linear features was their categorization as 

one of the 6 classes: hollow ways, roads, forest paths, 

historical paths, streams and background. Results of the 

experiments in conjunction with the quantitative and 

qualitative analysis validate the superiority and 

efficiency of Deep Learning (DL) techniques to extract 

and categorize linear features in DTM data. It was also 

concluded that the neural network methods particularly 

the High Resolution Network (HRNet) can be a better 

alternative to the classical methods due to its accuracy 

and straightforward approach. In summary, although we 

achieved reasonable results using only limited labeled 

data, with more labeled data, the model is expected to 

perform better both quantitatively and qualitatively.  

Therefore, future research in this direction includes 

employing an efficient semi-supervised learning method 

for DNNs also known as pseudo-labeling method 

proposed by (Lee et al., 2013), in order to confront the 

challenge of having limited number of labeled data. 

Image processing algorithms such as Hough Transform 

and Region Growing can also be used to postprocess the 

predictions done by our models. Moreover, more weight 

could be given to classes with thin structures which 

results into a smaller ratio compared to the other pixel in 

the input patch. 
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