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Abstract. Detecting changes is an important task to 

update databases and find irregularities in spatial data. 

Every couple of years, national mapping agencies 

(NMAs) acquire nation-wide point cloud data from 

Airborne Laser Scanning (ALS) as well as from Dense 

Image Matching (DIM) using aerial images. Besides 

deriving several other products such as Digital 

Elevation Models (DEMs) from them, those point 

clouds also offer the chance to detect changes between 

two points in time on a large scale. Buildings are an 

important object class in the context of change 

detection to update cadastre data. As detecting changes 

manually is very time consuming, the aim of this study 

is to provide reliable change detections for different 

building sizes in order to support NMAs in their task to 

update their databases. As datasets of different times 

may have varying point densities due to technological 

advancements or different sensors, we propose a raster-

based approach, which is independent of the point 

density altogether. Within a raster cell, our approach 

considers the height distribution of all points for two 

points in time by exploiting the Jensen-Shannon 

distance to measure their similarity. Our proposed 

method outperforms simple threshold methods on 

detecting building changes with respect to the same or 

different point cloud types. In combination with our 

proposed class change detection approach, we achieve 

a change detection performance measured by the mean 

F1-Score of about 71% between two ALS and about 

60% between ALS and DIM point clouds acquired at 

different times.  

Keywords: building change detection, Jensen-Shannon 

distance, point cloud types, density-independent, 

LiDAR and photogrammetry 

1 Introduction 

Knowing when and where a building has been newly 

built or has been demolished and consequently keeping 

the cadastre data up-to-date is a challenging, but only 

one of many tasks and responsibilities of NMAs to 

accomplish. If the building owners do not report 

finished changes on their buildings, the NMA or some 

local surveying agencies have to send out teams to 

check the status of running building projects, what 

often causes additional work and resources. By 

automatically analysing and detecting changes, more 

coordinated work trips are possible. Due to their 3D 

information, point clouds have a high potential to be 

used for object change detection. 

Besides ALS point clouds, which are acquired by the 

NMA every couple of years, DIM point clouds are 

often derived as a secondary product conducted by 

Orthophoto flight missions using a semi-global 

matching algorithm to generate a dense point cloud. As 

already discussed in (Mandlburger et al., 2017), ALS 

and DIM point clouds possess very unique 

characteristics concerning different point accuracies, 

point densities and especially their behaviour towards 

vegetation and texture lacking planes. Despite all these 

differences, both point cloud types are acquired in a 

regular interval by the NMAs and cover objects at a 

wide scale. As such, they offer a way to detect changes 

automatically, in a reasonable time interval and for 

many places at the same time.  

To support the workflow of the NMAs, we propose a 

change detection algorithm, which detects changed 

building objects independent of the given point cloud 

type, which consequently ensures maximal practical 

usability.  

The contributions of this paper are summarized as 

follows: 

 The proposed algorithm detects height

changes based on the height distribution

within raster cells. Compared to threshold-

based approaches, ours is more flexible and

does not require normalized heights.
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 We combine the analysis of height changes 

with simple class changes and explore the 

advantages and disadvantages towards the 

detection results. 

 We test our method to detect building changes 

on ALS and ALS as well as on ALS and DIM 

point cloud constellations to show its 

generalization potential. 

The remainder of the paper is structured as follows. In 

section 2, related work regarding change detection on 

airborne point clouds is discussed. We describe our 

method, evaluation methods, the used datasets and 

software in section 3. We present and discuss our 

results in section 4 and 5 and conclude this paper in 

section 6.  

2 Related Work 

Change detection on ALS point clouds is often 

working on either 2.5D raster or 3D voxel 

representations of point clouds or on the point clouds 

itself. 2D raster methods are often simple, easy to 

calculate and work on different point densities. 

Difference of Digital Elevation Models (DoD) subtract 

normalized DEMs from two points in time and then use 

a mostly manually set threshold to generate a binary 

detection result (Murakami et al., 1999; Teo and Shih, 

2013). This result is then combined with a 

classification into non-ground and building for all 

detected changes to filter out non building objects. On 

a local level using point clouds from mobile mapping, 

3D voxel grids track the occupancy of a voxel. From 

these occupancies, short and long term changes can be 

derived (Schachtschneider et al., 2017).  

Change detection methods on the point cloud level 

often measure the cloud to cloud (C2C) or cloud to 

plane distance of point pairs (Richter et al, 2012). 

Alternatively, an Iterative Closest Point algorithm is 

used, where the determined registration parameter are 

interpreted as movement between two point clouds 

(Matikainen et al., 2010; Scott et al., 2018). More 

complex variants such as the Model to Model Cloud 

Comparison algorithm (M3C2) also consider the 

normal vectors for their change calculations (Lague et 

al., 2013). Recently, even multi-directional change 

detection is used to detect the dominant movement 

direction of the ground (Williams et al., 2021). Other 

than only focusing on the geometric differences 

between point clouds, (Tran et al., 2018) calculate 

features from ALS point clouds and train a Random 

Forest classifier to classify complex change classes 

such as ‘new building’, which integrates classification 

and change detection into one process. Although those 

algorithms, which work directly on the point clouds, 

offer very accurate movement vectors, they often 

require similar acquisition methods and high and 

comparable point densities between both point clouds. 

High point densities might be achieved using DIM 

point clouds, where the point density is correlated to 

the ground sampling distance of the original aerial 

images, which typically results in 25 to 100 points/m² 

on a nation-wide level. However, this is not the case 

for nation-wide ALS acquisitions, which often only 

contain point densities around 8-10 points/m² (AHN3, 

2019).  

As DIM point clouds are still fairly new, only a few 

studies have been published concerning change 

detections with DIM data. For example, (Zhou et al., 

2020) include ALS data during the Dense Image 

Matching process to verify unchanged buildings and 

automatically detect small building changes while 

reconstructing the DIM point cloud. Another approach 

by (Zhang et al., 2019) trains a Convolutional Neural 

Network using rasterized ALS and DIM point clouds 

and additional Orthophotos as input for the network, 

which is trained to detect if a raster patch contains a 

change or not. After every patch is classified, 

neighbouring patches are connected using a connected 

component analysis to get the final change detection 

result.  

In our approach, we also rasterize the ALS and DIM 

point cloud to integrate both into a joint resolution. 

Instead of detecting changes according to coarse 

patches like in (Zhang et al., 2019) however, we 

calculate our change detection on each raster cell 

independently similar to the DoD methods. Rather than 

a simple threshold, we consider the complete height 

distribution within a raster cell to capture the similarity 

of two distributions using the Jensen-Shannon distance, 

which results in a likelihood of a change rather than a 

binary output.  

3 Method 

Change detection probabilities are calculated on a 

raster level with a cell size of 1m² and contain 

information about height and class change scores. As 

we calculate class changes, we expect the point clouds 

to be already classified. For our experiments, we used 

the classification method by (Politz et al., 2020). 
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First, the points of each point cloud are mapped into 

their respective raster cell. Second, the height and class 

change scores of section 3.1 and 3.2 are calculated and 

later combined to one joint change detection in section 

3.3. Third, the quality of the detected changes is 

evaluated using manually controlled reference data as 

explained in section 3.4. An overview of the method is 

shown in Fig. 1.  

 

Figure 1: Flowchart of the proposed method and 

experiments. 

3.1 Height change (HC) 

The height change ��  records the change probability 

concerning the variation in point height distribution � 

within a raster cell between two different points in 

time. 

3.1.1 Threshold 

In order to compare our method to the state-of-the-art, 

we implemented a version of the threshold method 

used by (Murakami et al, 1999) using a threshold � of 

� � 2�. Instead of a normalized point cloud however, 

we used the minimal point height ���	,�  of time � 

within a raster cell as an approximation of a DEM.  

This approximation is sufficient, as the threshold 

method should still detect those height jumps. The 

height change using the threshold method ����������  

is defined as 

���������� � �1,   �� ����	,� � ���	,�� � �
0,    !"                                     .   (1) 

3.1.2 Jensen-Shannon Distance 

The Jensen-Shannon Distance (JSD) is the square root 

of the Jensen-Shannon divergence, which is the 

symmetrized version of the Kullback-Leibler 

divergence $%∙'. It is calculated using Eq. (2) (Endres 

and Schindelin, 2003; Fuglede and Topsoe, 2005). 

��()* � +,$%-||/' �  0*%1||�'2*%3||�'
�    (2) 

Instead of comparing the distributions - and /, which 

are the respective height distributions ��  of time �� and 

��within a raster cell, the Jensen-Shannon divergence 

compares - and / with the mean distribution �, where 

� �  �
� %- 4 /'. As such, the order of - and / does not 

change the results, which is the main advantage of JSD 

compared to the Kullback-Leibler divergence. As 

discussed in (Lin, 1991), the divergence of two 

probability distributions such as +,$%-||/' in Eq. (2) 

vary in range between 0 and 1 using a base 2 

logarithm. As output values close to 0 represent similar 

and output values close to 1 represent differences in the 

distributions, we can interpret the result of +,$%-||/' 

as a height change probability, which is called ��()*  

for the remainder of this paper. 

As the calculation of +,$%-||/' requires - and / to be 

vectorised to same length, the ��  for time �� and �� are 

transformed into a joint histogram format using a bin 

size of 5. The range of the histogram is determined by 

the extreme height values between both point clouds 

within a tile’s extent. The calculated range is applied to 

each raster cell individually. Based on extensive 

experiments as shown in Fig. 14 – 17 in the Appendix, 

we chose 5 to be 0.5m, which is still small enough to 

detect real building changes while not being too 

oversensitive for smaller changes due to point accuracy 

of either point cloud type. To avoid small shifts 

between - and / for similar distributed raster cells due 

to the binning process, we calculate the JSD three 

times, where /  is moved by one bin in the range of 

6�1, 17. The minimal JSD is set as final JSD value for 

the raster cell.  
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3.2 Class changes (CC) 

After mapping the points into their appropriate raster 

cell, the class labels � � {9�, … , 9	}  for all available 

< ∈ > classes in the dataset, which are given from a 

prior classification process, are utilized to calculate the 

class change probability. The class probability 

?%��|��' is defined by the class labels � of all points 

within a raster cell given height distribution ��  at time 

� . The probability of class �	  is then defined as 

?%��,	|��'  with ∑ ?%��,	|��'	 � 1 . Additionally, we 

define the probability of the majority class ��,�AB  

within a raster cell at time �  as ?C��,�AB|��D  as 

denoted by Eq. (3).  

?C��,�AB|��D �  max	 %��,	|��'   (3) 

3.2.1 XOR Changes 

The XOR class change ��HIJ  simply checks if the 

majority class ��,�AB  has changed between the two 

points in time within a raster cell. It is defined as 

��HIJ � �1,   �� ��,�AB⨁��,�AB
0,    !"                         .   (4) 

For building change detection, one of ��,�AB or ��,�AB 

must be from type building.  

3.2.2 Class Probabilities   

The class change method ��L��M  considers the 

frequency of the transition probability ?%��|��' for the 

whole dataset (see. Eq. (5)). For each raster cell, the 

value in ?%��|��'  is used for calculation, which 

matches the majority class combination of ��,�AB  and 

��,�AB . This value is further noted as 

?C��,�AB|��,�ABD . As class changes are rare, 

?C��,�AB|��,�ABD on the minor diagonal is small. As 

such, it is subtracted from 1 to get the class change 

probability. In addition, we add a filter to isolate 

changes regarding buildings, since ?C��,�AB|��,�ABD 

per se does not restrict either ��,�AB  or ��,�AB  to 

belong to the building class itself. A simple function 

�%N'  filters the results on each raster cell, which 

returns the value of N , where N � 1 �
 ?C��,�AB|��,�ABD , if at least one building point is 

contained in the raster cell in either point cloud at time 

�. If that is not the case, �%N' will return 0. �%N' will 

also return 0, if ��,�AB � ��,�AB as there should not be 

any class change, if the majority class stays the same in 

both points in time. �%N' differs from ��HIJ in a way 

that it does not require building points to be the 

majority in a cell, but still filters out any irrelevant 

raster cells from the detection. 

��L��M � � O1 �  ?C��,�AB|��,�ABDP   (5) 

3.3 Change Combinations 

Different combination strategies are applied to evaluate 

the influence of the height and class probabilities of 

section 3.1 and 3.2 towards the change detection result. 

We experimented with different operations combining 

HC and CC and decided to use the element-wise 

multiplication as it yielded the best results in our 

experiments. Additionally, HC and CC are evaluated 

individually to determine their influence of the change 

detection results (see Eq. (6-8)).  

Independent of the chosen combination method, a 

threshold � generates a binary output from the detected 

changes, where all changes are set as foreground. Since 

the detected change values are between 0 and 1, where 

values closer to 1 indicate a change, any values below 

0.5 are not likely to contain changes anymore. 

Similarly, assuming that both HC and CC are very 

close to 1 for all real changes, which is required to 

have the combined detection to be higher than 0.9, is 

also not very likely. Consequently, we experimented 

with threshold � ∈ 60.5, 0.97  to figure out the best 

splitting point for the proposed changes. 

�ℎT<U VW � �1,   �� �� � �
0,    !"               (6) 

�ℎT<U WW � �1,   �� �� � �
0,    !"              (7) 

�ℎT<U W��M� � �1,   �� �� ∗ �� � �
0,    !"                         (8) 

3.4 Evaluation 

The building objects are evaluated on an object-based 

level. As a first step, a connected component algorithm 

with an 8-way neighbourhood extracts the detected 

building objects in the detected changes and reference 

image, respectively. Second, a sparse transition matrix 

is built that connects the building IDs from the 

detection with those from the reference. If a building 

consists of several small regions in the predicted 

image, all building parts are matched to the 

corresponding reference building ID in that matrix. 

Third, for each building pair, the amount of true 

positive (TP), false positive (FP) and false negative 

(FN) pixels is calculated.  
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Finally, the F1-Score for each building is calculated 

separately following Eq. (9).  

Y� �  L
L2 Z[%\L2\]'   (9) 

We exclude cells that contain no points in either point 

cloud from the evaluation process. As our method only 

considers the changes cell by cell, this would otherwise 

bias the evaluation metrics negatively as empty cells 

are not able to detect a change without any underlying 

data to support it. Therefore, only raster cells with at 

least one point in either point cloud are considered. To 

evaluate and compare our methods using different 

values for threshold �, we calculate the mean F1-Score 

(mF1-Score) for all buildings within the dataset.  

3.5 Data and Software Availability 

The point cloud data and code are not available due to 

licence issues with the cooperating parties. The 

workflow underlying this paper was partially 

reproduced by an independent reviewer during the 

AGILE reproducibility review and a reproducibility 

report was published at 

https://doi.org/10.17605/OSF.IO/rsf4m. 

4 Experiments 

4.1 Software and Data 

4.1.1 ALS and DIM point clouds 

We use three point cloud datasets from 2012 and 2016 

to evaluate our proposed method. The point clouds are 

provided by the NMA of Mecklenburg-Vorpommern 

(AFGVK), Germany. All three point clouds cover an 

area of 15 km² in southern Rostock, Germany. The 

region is characterized by high and low density, urban 

buildings. There are two ALS point clouds, which were 

acquired in national aerial flight missions in the 

autumn of 2012 and 2016 and which have approximate 

point densities of 5 and 12 points/m², respectively. The 

absolute point accuracy is 30cm horizontally and 15cm 

vertically for both ALS point clouds. The image data 

for the third point cloud was acquired in the summer of 

2016 using a Vexcel camera. The AFGVK used the 

software SURE to derive the DIM point cloud 

(Rothermel et al., 2012). The point cloud has an 

average point density of 96 points/m² with a horizontal 

and vertical absolute point accuracy of 20cm and 

30cm, respectively.  

 

Figure 2: Amount of reference building objects depending 

on their ground area. 

All point clouds have been classified into the classes’ 

ground, building, water, non-ground and bridge using 

the method of (Politz et al., 2020). The classification 

using the original point height concluded with an 

overall accuracy of 92% for the ALS 2012 and with 

97% for the ALS 2016 datasets, where the building 

class achieved a 91% and 94% F1-Score, respectively. 

The classification of the DIM point cloud achieved an 

overall F1-Score of 92% with a F1-Score for buildings 

of 90%. 

Changes between both point clouds have been 

manually digitalized as reference in vector format 

using GIS software. A changed building is included in 

the reference as long as point clouds from both points 

in time covered most of the buildings and were actually 

classified as such. For evaluation purposes, the vector 

data is transformed into a raster format using a 1m² 

resolution, which is also used for the change detection. 

The reference data contains a total of 723 changed 

building objects. The amount of changed buildings 

depending on their ground area are shown in Fig. 2. 

For the following sections, we refer to ALS-ALS as the 

detected changes between the ALS 2012 and ALS 

2016 datasets and as ALS-DIM for the detected 

changes between the ALS 2012 and DIM 2016 

datasets.  
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4.1.2 Runtime and computer specs 

The proposed methods and experiments were 

programmed in Python 3 using publically available 

libraries (Imageio 1 , Laspy 2 , Matplotlib 3 , Numpy 4 , 

OpenCV 5 , Scikit-Learn 6 , Scipy 7 , Seaborn 8 ). The 

experiments were conducted using an Intel Core i5-

7600 with 32GB RAM. The runtime is shown in Tab. 

1. The code is not optimized for parallel processing yet. 

Higher calculation times for �ℎT<U VW originate from 

many FPs caused by vegetation (see section 4.3). 

 

 ALS-ALS ALS-DIM 

HCs 3241s 4061s  

CCs 56s 55s 

Change 

[HC/CC/Combi] 

153s / 50s / 31s 80s / 44s / 32s 

Table 1: Conducted runtimes for all calculations 

concerning HC and CC or one averaged evaluation run to 

calculate the changes with a set ^ on the 15km² Rostock 

datasets. 

4.2 Quantitative results 

4.2.1 Changes in ALS-ALS 

The mF1-Scores for all buildings within ALS-ALS are 

listed in Fig. 3 – 5.  

The mF1-Scores of �ℎT<U VW using ����������  yield 

a stable value of 49.89% (see Fig. 3). This is due to its 

calculation as shown in Eq. (1), which turns 

����������  to a binary detection and is consequently 

indifferent to the changing values of �. In comparison, 

our proposed height change method ��()*  exhibits a 

parabolic behaviour with a maximal mF1-Score of 

60.54% at � � 0.8, which is roughly 10% higher than 

���������� .  

The two nearly horizontal lines for �ℎT<U WW  for 

different � as depicted in Fig. 4 are not surprising as 

��HIJ  only outputs binarized values, which are 

indifferent to varying � (see. Eq. (4)). As ��L��M only 

changes its value concerning �%N'  and 

                                                           
1 https://pypi.org/project/imageio/ 
2 https://pypi.org/project/laspy/ 
3 https://matplotlib.org/ 
4 https://numpy.org/ 
5 https://pypi.org/project/opencv-python/ 
6 https://scikit-learn.org/stable/ 
7 https://www.scipy.org/ 
8 https://seaborn.pydata.org/ 

?C��,�AB|��,�ABD, it only outputs a few differentiated 

values. As such, the mF1-Score is mostly indifferent 

towards �  and only changes with � � 0.9 as building 

objects with a ��L��M smaller than that drop out of the 

change detection. Until � ≤ 0.8 , ��HIJ  and ��L��M 

result in similar mF1-Scores for �ℎT<U WW  within a 

1% difference.  

The combined method embraces the characteristics of 

height and class changes as shown in Fig. 5. While the 

mF1-Scores of the threshold combinations stay around 

52%, the JSD combinations have a decreasing pattern 

with increasing �. As the mF1-Scores peak at � � 0.8 

for �ℎT<U VW and �ℎT<U WW , it is not surprising that  

�ℎT<U W��M�  has its maximal mF1-Score at � � 0.6 as 

their combined detection value. Overall, the combined 

change detection performs more than 10% better than 

�ℎT<U VW  and by around 3% better than 

�ℎT<U WWusing � ≤ 0.7 and ��()* .  

4.2.2 Comparing ALS-ALS with ALS-DIM 

The mF1-Scores for all tests concerning ALS-DIM can 

be found in Fig. 6 – 8.  

In contrast to ALS-ALS, the results for ALS-DIM yield 

higher mF1-Scores for larger �  values in �ℎT<U VW 

and �ℎT<U WW . JSD still outperforms the threshold 

method by 5-7% for �ℎT<U VW  using � � 0.9, which 

is slightly smaller than the ALS-ALS results. Both 

variants for �ℎT<U WW  result for ALS-DIM in similar 

mF1-Scores of about 56% for � ≤ 0.7, which is 12% 

lower than for ALS-ALS. At � � 0.7, the mF1-Score 

for ��L��M  increases to 56.28% as falsely detected 

objects drop out of the detection. Since �ℎT<U VW and 

�ℎT<U WW  require higher thresholds to achieve their 

best values, the peak for �ℎT<U W��M�  at � � 0.7  is 

also higher than the one using ALS-ALS at � � 0.6. 

Similar to the results for ALS-ALS, the combined 

approach for ALS-DIM with ��()*  achieves more than 

15-20% higher mF1-Scores than with ����������.  

For the remainder of this paper, figures and tables 

show the results using �ℎT<U W��M�  with ��()*  and 

��L��M unless noted otherwise. � is set to 0.6 for ALS-

ALS and to 0.7 for ALS-DIM. 
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Figure 3: Mean F1-Scores for cdefghic using different 

threshold values ^ on ALS-ALS. 

 

Figure 4: Mean F1-Scores for cdefghcc using different 

threshold values ^ on ALS-ALS. 

 

Figure 5: Mean F1-Scores for cdefghcjklm  using 

different threshold values ^ on ALS-ALS. 

 

Figure 6: Mean F1-Scores for cdefghic using different 

threshold values ^ on ALS-DIM. 

 

Figure 7: Mean F1-Scores for cdefghcc using different 

threshold values ^ on ALS-DIM. 

 

Figure 8: Mean F1-Scores for cdefghcjklm  using 

different threshold values ^ on ALS-DIM. 
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4.3 Qualitative results 

Fig. 9 shows predicted building changes for both point 

cloud datasets in Rostock. During the period of 2010 

and 2016, several buildings in that region either have 

been demolished, have been built or were still under 

construction. The detected changes in both ALS-ALS 

and ALS-DIM achieve a comparable overlay with the 

reference. In fact, both detection results in Fig. 9c and 

9d even surpass the reference, since they contain an 

additional building (red circle), which was missed 

during the reference labelling process. Similarly, the 

ALS-ALS detection in Fig. 9c reveals an additional 

building within the blue triangle, which has been built 

during the summer and autumn acquisition of the DIM 

and ALS data, respectively. Other examples of change 

detection results for ALS-ALS and ALS-DIM can be 

found in Fig. 18 and 19 in the Appendix. 

However, there are also some misjudgements in the 

detection results, which generate FPs and FNs. Most of 

these originate from the discretisation within our 

method or from the differences in ALS and DIM 

characteristics. The overall TP, FP and FN values are 

listed in Tab. 2. The number of raster cells, which 

return as FP, are 0.29% or 0.46% higher than the 

number of TP raster cells for the ALS-ALS and ALS-

DIM dataset, respectively. Most of the FPs are 

covering single, isolated raster cells at the border of a 

roof as shown in Fig. 9 (yellow rectangles). Due to 

some remaining misalignments or simply due to the 

coarse point accuracy between the point clouds, the 

rasterization process sometimes splits points at the 

border of a roof into two different raster cells. 

Likewise, the 17% more FPs for ALS-DIM compared 

to ALS-ALS in Tab. 2 indicate, that the distinct 

characteristics in the two point cloud types are another 

reason for the high FP number (see Fig. 10). This is 

especially the case for vegetation. While the laser beam 

in ALS can penetrate the foliage and return points on 

the tree and the ground below, DIM point clouds 

mostly contain points on the treetop. Consequently, this 

difference in height distributions causes incorrect 

height changes (see Fig. 10c). In addition, the transition 

from building to close vegetation is often fluent due to 

the smoothing term in the DIM process, which causes 

misclassifications on the border and trigger incorrect 

class changes as visible in Fig. 10d. Contrarily, FNs 

often occur on buildings with translucent glass roofs as 

they have the same issue as vegetation (see Fig. 11). In 

ALS, the laser beam often penetrates the glass and 

returns a signal from the ground as well as some roof 

parts, while in DIM only the roof is reconstructed.  

 

Figure 9: Example results for a large construction site. a) 

and b) show the Orthophotos of 2010 and 2016. c) and d) 

display the detected changes for ALS-ALS in yellow and 

ALS-DIM in blue, respectively. Reference data is 

coloured in red.  

 TP FN FP 

ALS-ALS 35.697 

(0.23%) 

5.723 

(0.04%) 

77.580 

(0.52%) 

ALS-DIM 34.229 

(0.23%) 

7.191 

(0.05%) 

103.810 

(0.69%) 

Table 2: Number and percentages of TPs, FNs and FPs in 

regards to the whole Rostock dataset (15 Mio. raster cells 

in total).  
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Figure 10: FP errors for ALS-DIM often occur due to 

vegetation close to buildings, which causes incorrect 

height and class changes. a) shows the Orthophoto of 

2016, b) the results of cdefghcjklm , c) the results of 

cdefghic using icnop with ^ � q. rs and d) the results 

of cdefghcc using cctujl with ^ � q. v. 

 

Figure 11: Change detection results for small buildings 

with glass roofs. a) shows the Orthophoto of 2016. b) and 

c) display the detected changes for ALS-ALS in yellow 

and ALS-DIM in blue, respectively. Reference data is 

coloured in red.  

 

4.4 Results depending on building size 

The achieved F1-Scores of our method demonstrate an 

increasing trend with respect to area size. This is to be 

expected as the evaluation takes place on a raster level. 

If the same number of pixels are wrongly detected, this 

will affect the ratio between TP, FP and FN for smaller 

buildings more drastically than for larger ones. The F1-

Scores for the ALS-ALS and ALS-DIM detections are 

plotted depending on their ground area in Fig. 12 and 

13, respectively. Especially the median F1-Scores for 

building areas less than 10m² are around 10-20% for 

ALS-ALS and around 30-40% for ALS-DIM lower 

than the groups with larger ground areas. Contrarily, 

the 5% percentiles remain at 30% for buildings until 

30m² in ALS-ALS (see Fig. 12) and even as low as 

10% until a 50m² area in ALS-DIM (see. Fig. 13). 

These are caused by the volatile FP, TP and FN ratios 

for smaller buildings, which are also mostly affected by 

the FPs and FNs as discussed in section 4.3. At even 

larger areas, the majority of the detected buildings has 

a F1-Score in a concise area around 80-90% for both 

datasets.  

5 Discussion 

The results of the proposed change detection method 

show median F1-Scores for ALS-ALS and ALS-DIM 

of more than 70% for buildings larger than 10m² (see 

Fig. 12 and 13), which indicates a reliable support to 

detect changed buildings for practical applications. 

However, as discussed in section 4.3 and 4.4, some 

issues regarding the proposed method remain. The 

discretisation on behalf of the rasterization and the 

binning for the height distributions cause FPs. Using 

simple raster-based post-processing or incorporating a 

hierarchical approach, which assumes that errors may 

not occur in a different resolution, could reduce small 

errors at the border of roofs as visible in Fig. 9, 11, 18 

and 19. Equally, using exclusively the points from the 

first or last pulse in ALS point clouds may reduce the 

amount of incorrectly detected height changes caused 

by vegetation for ALS-DIM and ALS-ALS, 

respectively. Similarly, the filter �%N'  from Eq. (5) 

permits class changes for any arbitrary class in the 

datasets, but it is too simple to remove 

misclassifications as shown in Fig. 10d. In addition, the 

restriction ��,�AB � ��,�AB  of �%N'  was supposed to 

remove unchanged buildings from the class change 

result.  
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However, this restriction also prohibits detecting 

buildings, which are under construction or built-over, 

since one building is changing to another (see Fig. 19). 

A more sophisticated class change calculation such as a 

Bayes Network or Deep Learning may improve these 

shortcomings.  

There are multiple strategies to enhance the proposed 

method and its results. As neighbouring cells should 

have a similar behaviour as long as they belong to the 

same object, enhancing the detection method with an 

additional object level should improve the detection 

integrity of a changed building as a whole. Equally, 

using the class information as a prior or by non-linear 

weighting of height and class changes, the overall 

detection results may improve. Finally, introducing 

different types of changes such as new, demolished, 

under construction or built-over may enhance 

readability and understanding of the resulting 

detections for practical applications.   

6 Conclusions 

We introduced a new method to detect height changes 

in point clouds using the Jensen-Shannon distance on a 

rasterized grid, which yielded superior results by 10 – 

20% in the mean F1-Score in all experiments compared 

to the state-of-the-art threshold method. Introducing 

simple class change methods and combining them with 

our height changes achieved mean F1-Scores about 

71% for changes between two ALS point clouds and 

about 60% for changes between an ALS and DIM point 

cloud. Even though there are still some issues 

concerning incorrectly detected buildings by our 

method, the presented results suggest that it is able to 

detect changed building objects quite effectively with 

median F1-Score of more than 70% for any point cloud 

type and for all buildings with a ground area larger 

than 10m². This is crucial for practical approaches as it 

allows detecting changed building objects 

automatically and in an efficient manner. 

In future work, the issues and improvements discussed 

in section 5 will be investigated. For example, 

incorporating a more complex class change calculation 

or combination approach such as using a Bayesian 

network or by utilizing a Deep Learning model as non-

linear weighting method may solves the discussed 

weighting issues, improves the building detection, and 

replaces the need to set parameters manually.  

 

 

Figure 12: Boxplot shows the F1-Scores grouped by the 

ground area size for ALS-ALS. Whiskers are at 5% 

percentiles, diamond symbols show outliers.  

 

Figure 13: Boxplot shows the F1-Scores grouped by the 

ground area size for ALS-DIM. Whiskers are at 5% 

percentiles, diamond symbols show outliers. 

Similarly, an object-based approach using a 

Conditional Random Field or Deep Learning may 

improve the results as neighbouring raster cells are 

likely to behave similarly. Finally, more sophisticated 

methods will be explored to cope with class changes, 

data gaps in general or more complex building change 

situations.  
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Appendix 

 

Figure 14: Mean F1-Scores for cdefghic using different 

thresholds ^ for varying bin sizes w for icnop  on ALS-

ALS.  

 

Figure 15: Comparison mean F1-Scores for 

cdefghcjklm using different thresholds ^ for varying bin 

sizes w for icnop on ALS-ALS.  

 

 

Figure 16: Comparison mean F1-Scores for cdefghic 

using different thresholds ^  for varying bin sizes w  for 

icnop on ALS-DIM.  

 

Figure 17: Comparison mean F1-Scores for 

cdefghcjklm using different thresholds ^ for varying bin 

sizes w for icnop on ALS-DIM.  
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Figure 18: The small window between the DIM and the ALS acquisition in the summer and autumn of 2016 reveal the 

ongoing construction progress in the change detection results. a) and b) show the Orthophotos in 2010 and 2016, respectively. 

c) and d) illustrate the absolute height differences between ALS-ALS and ALS-DIM. e) and f) reveal the detected changes in 

yellow and blue for ALS-ALS and ALS-DIM, respectively, compared to the reference in red. Not all of the changes between 

a) and b) are included in the detections as some buildings in the West were already built between the 2010 and 2012 gap for 

the Orthophoto and the ALS 2012 acquisition. 

 

 

 

 

 

 

 

 

 

AGILE: GIScience Series, 2, 10, 2021 | https://doi.org/10.5194/agile-giss-2-10-2021 13 of 14



Figure 19: Example results display sub-optimal change detection results for a building under construction. a) and b) show the 

Orthophotos in 2010 and 2016, respectively. c) and d) reveal the detected changes of cdefghcjklm for ALS-ALS in yellow 

and ALS-DIM in blue compared to the reference in red. e) and f) display the cdefghic detection results using icnop with 

^ � q. rs for ALS-ALS and ALS-DIM, respectively. g) – l) show the classified left building from the three different point 

clouds ALS 2012, ALS 2016 and DIM 2016. The building class is displayed in red, the ground class in gray and the non-

ground class in green. Detected changes in cdefghic are no longer visible in the combined approach due to the restriction 

of cx,key z c{,key. 
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