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Abstract. Unmanned aerial and submersible vehicles are used in an
increasing number of applications especially for data collection in misan-
thropic environments. During a mission, such vehicles generate multiple
spatio-temporal data streams suitable to be processed by data stream
management systems (DSMS). The main approach of a DSMS is limit-
ing the elements of a stream by using sliding and tilting windows with
time intervals as temporal condition. However, due to varying vehicle
speed and limited on-board resources, such temporal windows do not
provide adequate support for spatio-temporal problems. For solving this
problem, we propose a set of six new spatio-temporal window operators
in this paper. This set comprises of sliding distance, tilting distance, tilt-
ing waypoint, session distance, jumping distance and an area window
to limit stream elements based on spatial conditions. Each of the listed
operators provides an individual behaviour to support sophisticated ap-
plications like spatial interpolation and forecasting. An evaluation based
on an example trajectory shows the benefit of the presented operators
for spatio-temporal applications.

Keywords: Spatio-Temporal, Data Stream, Window Operator, Moving
Object, Unmanned Vehicle

1 Introduction

The use of autonomous vehicles performing observation tasks has increased in re-
cent years. Unmanned aerial vehicles (UAV), autonomous surface vehicles (ASV)
and autonomous underwater vehicles (AUV) or similar vehicle types are typi-
cally equipped with multiple sensors in order to observe environmental phenom-
ena and to search for features of interest [1]. Those vehicles are often limited in
resources. In many cases, the distribution of data between vehicles in a network
is restricted or impossible due to a low bandwidth, missing signal strength or
low energy level. Especially submersible vehicles are subjected to the limits of
an acoustic based underwater communication system, which offers a maximum
transmission rate of a few kilobytes per second [2]. In addition, their small power
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supply restricts a participation on long-during missions and prevents using pow-
erful hardware for processing sophisticated data. Nevertheless, each sensor on
an UAV, ASV or AUV generates an unbound amount of data elements that
are associated with observation time and vehicle location. This information is
the base for planning paths [3], preventing collisions, controlling the vehicle and
supporting mission plans [4]. Therefore, it needs to be evaluated by the on-board
system in situ.

One example is the search for the source of a contamination [1]. The mission
time for observing indicating phenomena depends on the available vehicle re-
sources. Especially the on-board power supply is typically very limited. In some
cases, the vehicle is not moving or is moving slowly. The slower the vehicle drives
the more observations are located at almost the same location. This spatially
redundancy data burdens the system unnecessarily and should be reduced to
save resources.

In regard to the previously described task of searching an arbitrary source,
the on-board mission plan can be supported by estimating the trend of past
observations as well. If those observations are used to generate gradients, it is
possible to determine whether the vehicle is moving away from or approaching
the source.

Another example is the observation of features of interest in a certain area.
The vehicle has to take into account the observations that are within a predefined
mission area. Elements that are located outside, do not need to be processed
by the vehicle. Discarding insignificant data leads to a reduced processing load
while the vehicle is maneuvering to the mission area or is coming back to its
home station.

One approach for solving the described issues is to use a conventional spatial
database management system (DBMS) for organisation and querying of data.
However, traditional spatial database systems are focused on dealing with low
dynamical spatial data instead of managing a continuously changing database [5].
Moreover, traditional spatial database systems focus on working in a network-
based multi-user environment and are not designed to work with limited re-
sources and a single peer.

An alternative approach is the use of a data stream management system
(DSMS) that is specialized to operate on a continuously changing data [6][7][8].
In contrast to a conventional database system a DSMS defines a query lan-
guage, entities, operators and execution plans for processing data streams. One
key feature is the introduction of windows which limit elements of an unbounded
stream by measuring the elapsed time (time-based window) or by counting ele-
ments (row-based window) [9]. But, those windows just consider time dimension
and are often not effective on spatial and spatio-temporal issues. Especially, in
the case of vehicles with changing speed, time-based or row-based windows are
inefficient.

To handle the described issues, we see the need of specialised windows that
take into account temporal dimension and spatial dimension. Therefore, we de-
signed and implemented six different spatio-temporal window operators. These
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operators use spatial and spatio-temporal conditions to reduce the number of
elements in a data stream. The design of the operators was motivated by the
requirements of autonomous underwater vehicles.

This paper is divided into six sections. The next section presents related work
about processing data streams. The third section gives an overview on temporal
windows and illustrates their properties in detail. Afterwards, spatio-temporal
window operators and their principles are introduced. To illustrate the benefits
of the presented operators, Section 5 applies such windows on an example vehicle
trajectory and demonstrates their basic properties and advantages compared to
time-based windows. The last section provides a summary and gives an outlook
to future work.

2 Related work

Unmanned vehicles generate a mass of high dynamic spatial data. The arise of
autonomous vehicles leads to new data sources that can help to improve efficiency
in several tasks like environmental monitoring. However, such spatio-temporal
data sets are complex and need adequate processing techniques [10]. Typical
DBMS are not prepared for dealing with such data because they are developed
for managing and querying spatial data that are static or offer low dynamics.
Especially, indexing of rapid changing data is a challenge [5]. Highly specialized
systems are developed for dealing with vast amount of complex spatio-temporal
data. The disadvantage of such systems is that they depend on sophisticated
infrastructures [11] which often do not exist on unmanned vehicles. A more suit-
able approach for processing streams on-board is the use of a DSMS [6][7][8]. In
the early years, major issues of such systems were the limited memory and the
use of blocking operators on continuous streams [12]. Current systems are able
to process continuous, rapid, time-varying and boundless data. However, com-
puting exact results based on recent data is still non-trivial. As a result, several
approaches were made that use approximations to compute sufficient query re-
sults. One popular approach limits elements in a stream based on their temporal
properties by windows [9][13][14]. A window uses an interval for validating each
stream element. As soon as the condition is not satisfied anymore, the element
is discarded. These windows are well supported by modern DSMS. PipelineDB
[15] Apache Flink [16] and Odysseus [17] are examples.

Windows are also used in a spatio-temporal context: They were applied in
social media to analyse and organize geo-tagged streaming text messages [18].
The medical domain uses sliding windows to process only recent sensor data,
for predicting the upcoming fall of a person [19] as example. DSMS that are
specialized for vehicles make use of such windows as well. As main component of
an automotive, the DSMS provides a central node for distributing and analysing
sensor data [20].

We developed an architecture for processing spatio-temporal data streams
on AUVs [21]. The advantage of our system is that it is specialized to operate
on resource limited vehicles and is developed as an extension for the SQLite
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database engine. This approach allows operating on traditional tables and data
streams together in one environment. Our architecture includes time-based and
row-based windows. The disadvantage of such operators is that they do not con-
sider the special needs of moving objects. Some use cases are satisfiable by using
pure temporal windows. As soon as spatial conditions do exist, the operators fail
or provide a massive overhead.

3 Temporal windows

This section reviews existing temporal window operators. In the following of
the paper, we adopt their main principles and reuse them in a spatio-temporal
context.

Several types windows can be used to limit the elements of a infinite data
stream [9]. Figure 1 compares the behaviour of four temporal window types.
The first row with label data contains the incoming elements of a data stream
while the coloured vertical lines at t1, t2 and t3 mark the instant of time when
a window is queried. For each window type, the result set is depicted by using a
rectangle. The rectangles are as colored as their corresponding time of querying.
The first row of a window type depicts the result set at t1, the second at t2 and
finally the third at t3.

Fig. 1. Temporal window types. Modified illustration according to [9] and [13]

4 of 23

AGILE: GIScience Series, 1, 2020. 
Full paper Proceedings of the 23rd AGILE Conference on Geographic Information Science, 2020. 
Editors: Panagiotis Partsinevelos, Phaedon Kyriakidis, and Marinos Kavouras 
This contribution underwent peer review based on a full paper submission. 
https://doi.org/10.5194/agile-giss-1-21-2020 | © Authors 2020. CC BY 4.0 License.



The landmark window (also known as global window) holds all elements since
the beginning of the stream and returns everything seen so far at the time of
querying. This operator needs to be used when all elements of a stream are
significant and every element shall be processed. The sliding window holds ele-
ments that are not older than a specified age. The time interval for the validation
process is defined by the window size ωsize. Updates on the result set are done
continuously and identical elements in multiple result sets are typical. This op-
erator has to be used when an application needs a latest snapshot of past data.
The tilted window (also known as tumbling [14] or fixed window [13]) is defined
by a window size ωsize, too, but does not update the assigned result set continu-
ously. As soon as a window period is completely in the past, it becomes the new
active window instance which holds the result set. The tilted window operator
has to be used when a sophisticated application needs a more static snapshot of
past data without redundancy. The session window provides elements that are
close together in time. As soon as the temporal gap ωsize between elements of
the stream is bigger than specified, a new result is becoming the active instance.
This window can be used for applications that depend on processing groups of
elements.

4 Spatio-Temporal windows

In this section, we introduce six operators for solving the described issues and
discuss their benefit compared to pure temporal windows based on an exemplary
mission.

Our basic idea is to apply the underlying principles of the temporal window
types to the spatial domain. Thereby, the process of assigning elements to a win-
dow instance is using spatial conditions instead of using temporal conditions. For
that, there is a need for strictly ordered elements. Temporal windows presuppose
a temporal order of incoming data. Elements of a stream can have multiple ex-
plicit and implicit temporal properties which can be used for ordering. Implicit
information can be added by the DSMS to hold the time of element genera-
tion to support internal processing. Explicit properties typically are dedicated
attributes that are set by externally. Only elements that are newer than the last
seen are processed. Otherwise, their ordering is wrong and they are discarded.
We reuse this temporal information of each element to define the trajectory of
a moving object.

4.1 Exemplary mission

To show the issues of temporal window operators, we use the scenario depicted
in Figure 2. This scenario is a simulated movement of an AUV for an observation
mission. This data set is also used for evaluating the introduced operators later.
The simulated vehicle estimates its location in a frequency of 10 Hz and uses a
steady propulsion that can reach a speed of 2 meters per second. Due to several
effects, the density of recorded locations changes over time. The slower the vehicle
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is moving the higher is the density of locations and vice versa. This density is
important because it mostly corresponds to the concentration of observations in
the proximity.

Fig. 2. Simulated trajectory of an AUV during an observation mission

At some point, the mission of a unmanned vehicle starts (see rectangle A in
Figure 2). Typically it is not moving yet. As soon as hardware check-ups and
calibration processes have been finished, the vehicle starts moving and acceler-
ates.

The speed of an unmanned vehicle can be heavily influenced by environmental
forces. UAVs can be accelerated or slowed down by gusts. The actual speed of
USVs and AUVs depends on water currents. Like in area B of Figure 2, the
direction of the vehicle movement and the direction of water current lead to a
higher density of locations if they are directed in the same direction or to a lower
density of locations if they are in opposite directions. The more powerful the
water current is, the higher is the expected influence on the density of locations.
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The online mission plan of autonomous vehicles has to react on unpredictable
situations like obstacles in situ. Area C in Figure 2 shows a slow-down by the
vehicle for calculating alternative routes around an obstacle. Depending on the
system infrastructure, this step can be relatively time-intense before the vehicle
accelerates to fulfill the mission.

Temporal windows from Figure 1 can be used to limit elements of a stream
based on spatial condition as long as the vehicle speed is constant. Getting
a snapshot of observations that are within a travelled distance of 100 m as
example. Assuming a constant vehicle speed of three knots (1,54333 m/s), a
sliding or tilting window with at least ωsize = 65sec is needed. However, a
constant vehicle speed can not be guaranteed. As soon as the vehicle accelerates
or gets slower, the corresponding window size has to be adjusted. In the worst
case, this adjustment has to be performed on every observation. This recurring
process is additional work and can be avoided by using one of the following
operators.

4.2 Sliding distance window

Fig. 3. Sliding distance window

The sliding distance window is inspired by the temporal sliding window, but
it uses the travelled distance as window condition instead of a time interval. The
principle is shown in Figure 3 based on an example. The waypoints l0 to l11
are vehicle locations that have a temporal order which starts at l0. t0, t1 and t2
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define consecutive points of time when the result set of the window is queried.
The red point indicates the current vehicle location. Elements that are assigned
to the window instance (and fulfill the window condition) are filled while the
discarded elements are not filled.

Time-based windows W time
ω are defined in formula 1 [22]. They limit the

elements of a stream S by a temporal interval Tω. The window ω defines the
bounds of such interval and generates a finite set of data that is provided as
relation R.

W time
ω : S ×Tω −→ R (1)

For defining spatio-temporal windows W spatial
ω , we adapt in formula 1 and

introduce the spatial property Dω that specifies the condition for limiting the
elements of a stream S . In case of the sliding distance window, Dω represents
the travelled distance. The result set R of a queried window instance contains
every element that is located on the track and is within the window distance
size ω.

W spatial
ω : S ×Dω −→ R (2)

For determining which elements are within the window, we define distance
intervals and introduce the function δ in formula 3. This function calculates
the distance on a trajectory from the beginning to the given location (or set of

locations) whereas the last known location is defined as ~ln.

Dω(~ln) =

{
[0, δ(~ln)], if 0 ≤ δ(~ln) ≤ ω
[δ(~ln)− ω, δ(~ln)], if δ(~ln) > ω

(3)

Consequently, every new generated location is assigned to the window in-
stance instantly. Finally, as soon as an element is out of range it will be removed.
In regard to Figure 2, a result set can be provided that represents observations
on a specified length of the track without doing recurring adjustments of window
parameters.

The property of the sliding mechanism assures that the data of the result
set is always up-to-date. But, this feature depends on continuous updates on
the result set, which can be massive due to data that is measured in high fre-
quency. Sophisticated applications can be overstrained by processing all result
sets. Furthermore, the sliding principle results in overlapping sets which cause
redundancy in some cases. Applications, that bases on an incremental processing
would not benefit by this type of window.

4.3 Tilting distance window

The principle of the tilting distance window is similar to the previously described
sliding distance window and is specified by the parameter ω as well. But unlike
the sliding approach, the tilting distance window does not change its result set
continuously. Only as soon as the vehicle has travelled the specified distance, the
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assigned elements will change. An example is illustrated in Figure 4. Querying
the window at t0 provides the same result set as querying at t1 because the
travelled distance since the last window instance is not larger than the specified
distance. This causes a skip of the blue-framed elements l6 and l7. At t2 the
window instance tilts and changes the assigned elements. According to Figure
2, this operator generates result sets which represent observations in a certain
travelled distance.

Formally, this operator is defined in formula 4, which makes use of the gaus-
sian floor notation.

Dω(~ln) =

{
∅, if 0 ≤ δ(~ln) ≤ ω[(⌊

δ(~ln)
ω

⌋
− 1
)
· ω,

⌊
δ(~ln)
ω

⌋
· ω
]
, if δ(~ln) > ω

(4)

In contrast to the sliding window, the advantage of this window is a lower
frequency of updates of the result set. Once a result set is defined, it will not get
altered by adding or removing elements. As a result, sophisticated applications
have to be triggered less often. But, a lower update rate leads to a skip of
recent data and makes the results of an analysis more outdated or inaccurate.
Applications that need input datasets without redundancy benefit from this type
of window.

Fig. 4. Tilting distance window
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4.4 Tilting waypoint window

The mission plan of self-driving vehicles often uses waypoints as markers to
define the route to a target. In many cases, such waypoints are deliberately set
and represent points of interest. The observation mission that is illustrated in
Figure 2 uses waypoints to define the edges of the targeted route. For example,
area B marks two edges that both were defined by two waypoints and have
opposite directions. Estimating the trend of an observation along a predefined
segment of a whole track cannot be solved by a window that is based on a steady
distance or a steady time interval.

Fig. 5. Tilting waypoint window

As a solution, we provide the tilting waypoint window that is illustrated in
Figure 5. This window declares points of interest as main condition for defining
the event of tilting. This principle is very similar to the tilting distance window
but allows using certain path segments as semantic breakpoints. As illustrated,
all elements that are located in time between two predefined waypoints (including
the waypoint itself) are assigned to the active window instance and thus are part
of the result set. As soon as a waypoint is visited by the vehicle, like it does at
t1 on location l6, the window will tilt. In contrast to the tilting distance window,
the last element that is assigned to a window instance is the first element in
the subsequent window instance. This double usage is helpful for representing
segments as geometric edges. In respect to Figure 2, a processing of observations
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can be based on specified track segments. Processing all segments that are not
part of an evasive action (area C in the figure) is an example.

We formalize this operator in formula 5 and 6. κ is a set of locations for
representing all waypoints and υ all visited waypoints. The max function selects
the element with the highest value.

υ = {υ ∈ κ | is visited} (5)

Dω(~ln) =

{
[ 0, δ(~ln) ], if υ is ∅
[ max(δ(υ)), δ(~ln) ], if υ is not ∅

(6)

One advantage of the described window is that is allows a semantic approach
for path segmentation. Thus, the calculation of trends for estimating phenomena
based on classified segments is supported. One disadvantage is the movement
accuracy that a vehicle offers. In the most cases, a waypoint is not visited exactly
due to inaccuracies. Thus, the window does not tilt like expected. One approach
for solving this issue is to approximate the waypoints by buffers.

4.5 Session distance window

The condition of the session distance window is based on a spatial gap ωgap. As
long as adjacent locations are within this gap, the associated elements will be
assigned to the active window instance. As soon as a pair of locations provides a
distance between two consecutive elements that is larger than the specified gap,
a new window instance will be created which becomes the new active instance.

An example of the session distance window is illustrated in Figure 6. The
location pairs (l2, l3) and (l7, l8) have a distance that is larger than ω. Therefore,
window instances will be created as soon as the vehicle has reached l3 and l8. All
following elements are assigned to the current window instance. The described
behaviour arranges nearby elements into groups according to their distance from
each other. In reference to Figure 2, this operator can group observations based
on their distances and allows summarizing values based on their location. Like
area A in the figure, where the vehicle is not moving or moving very slow. There
are many elements that are very close to each other. Values that are within this
small area can be grouped by the session distance window and summarized to
calculate an approximation.

The session distance window is defined in formula 7 and 8. l is a set of all
locations on the trajectory and li the ith location on the trajectory.

υ =

{
∅, if n ≤ 1

{υ ∈ l | δ(~li)− δ(~li−1) ≥ ω}, if n ≥ 2
(7)

Dω(~ln) =

{
[ 0, δ(~ln) ], if υ is ∅
[ max(δ(υ)), δ(~ln) ], if υ is not ∅

(8)
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Fig. 6. Session distance window

Similar to the tilting distance window, the result sets share no elements
together. Thus, no data redundancy is generated. However, the current active
result set must be changed as soon as a new element has been assigned to that
window.

4.6 Jumping distance window

Another principle of reducing the elements of an unbound data stream is sam-
pling [9]. Such reduction approach is the basic idea of the jumping distance
window. As soon as the associated vehicle has changed its location by a prede-
fined distance ω, the next spatial element will be assigned to this window. Thus,
a result set is provided that represents the environment in a lower resolution.

The principle of this window is illustrated in Figure 7. The first element that
is assigned to the window instance is l2. As soon as the vehicle has travelled a
distance that is greater than ω, the next element will be assigned to the current
result set. At time t0 the next assigned element is l5. This behaviour can lead
to skip recent data. Like at time t1 when the location is l7 but l6 and l7 are
not part of the result set. According to Figure 2, this operator can be used
to select observations in a periodical distance. Especially for the processing of
observations in area B where the density of locations is varying massively, this
operator is helpful to provide observations in a uniform resolution.

The definition of this operator is given in formula 9. The operator mod cal-
culates the rest of a division. ε defines a granularity and represents the accuracy
of the spatial condition.
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Fig. 7. Jumping distance window

Dω(~ln) = {υ ∈ l | δ(~li) mod ω < ε} (9)

The advantage of this window is that it can reduce the resolution of spatial
data sets. This leads to a higher ratio of cost and benefit in sophisticated appli-
cations. Furthermore, recent data like observations at the current location are
possibly ignored.

In a scenario where only a couple of recent observations are significant, this
operator can be combined with other window types. After adding the sliding or
tilting distance window, only recent elements will be added to the result set and
the resolution will be reduced at the same time.

4.7 Area window

One main feature of a spatial database system is to provide efficient access
on spatial data. The Dimensionally Extended 9-Intersection Model (DE-9IM)
defines several spatial relationships that can be used in a spatial query. The
main problem of spatial queries is that geometrical tests between geometries
are a sophisticated task. One typical approach for speeding up such tests is
using approximations. Minimal Bounding Rectangles (MBR) of exact geometries
are mostly applied. Calculating the relation between two MBRs as prior filter
step is fast and allows reducing the set of candidates massively. Because data
stream processing systems are typically used in time-critical environments, the
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area window filters elements based on MBRs instead of complex geometries. In
respect to the DE-9IM this window uses the topological within operator.

An example is shown in Figure 8. The red rectangle specifies the area which
represents the spatial condition for assigning elements to the current window
instance. Locations like l3, l4 and l5 at the time t0 are added to the result set
while the outlying elements l0, l1 and l2 are discarded immediately.

Fig. 8. Area window

Formally, this operator is described in formula 10. ω defines a bounding box
that is bounded by the coordinates (minx,miny) and (maxx,maxy).

Dω(~ln) = {υ ∈ l | ωminx < lix < ωmaxx and ωminy < liy < ωmaxy} (10)

The advantage of this window is that only elements are processed that are
within a specific area. Especially in a mission where the vehicle has to drive a
long distance until it reaches the target area, the on-board system will benefit by
ignoring data which is located in irrelevant areas. This situation can be observed
in Figure 2. As soon as the mission begins, the vehicle starts on a location that
is in area A. The vehicle now has to drive to the target area of the mission and
later leave that area to come back to the starting point. Both parts of trajectory
are completely insignificant and offer no observations that have to be processed.

This operator is suitable for a combination with other window types. A sce-
nario which has a need for recent observations that are located in a certain area
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would benefit from adding a sliding distance window or tilting distance window.
Even a jumping distance window can be added as third operator to reduce the
generated result set.

5 Evaluation

The principles of the introduced spatio-temporal windows were presented in the
previous section. This section evaluates them by using the trajectory that is
presented at the beginning of this paper in Figure 2. We compare the amount
of elements that the result sets include and describe their particularities. The
sliding distance window is omitted due its similarity to the tilting distance win-
dow. They only differ in the time of updating the result set. The session distance
window is not evaluated as well because the trajectory of our exemplary mission
in Figure 2 represents a continuous movement. But, the session distance window
is only reasonable to be applied in case of irregular variations in the distances
between locations.

Fig. 9. Trajectory segments of tilting window with ωsize = 250sec
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5.1 Data and Software Availability

For illustration purposes, we implemented the window operators in PostgreSQL
in combination with the spatial extension PostGIS. We also implemented such
operators in our data management stream system that adds support to SQLite
for processing spatio-temporal data streams by using the virtual table mecha-
nism. Details about a technical implementation can be found here. Following the
AGILE Reproducible Paper Guidelines, the software and all data supporting this
publication is published at https://figshare.com/s/cc758d056c8c6f193e52

and https://figshare.com/s/3580e224f76adc0e3425 under the MIT-license.

5.2 Temporal tilting window

At first, we applied the conventional temporal tilting window with a size of
ωsize of 250 seconds. The windows are illustrated in Figure 9 by alternating
colours. Assuming a constant vehicle speed at three knots (1,54333 m/s) and
a fixed observation frequency of 5 Hz, each window instance would provide a
result set of 1250 elements that represent a track of about 386 meters. But,
due to external forces and maneuvers the actual represented segment length
for window instances is varying. This variation is illustrated in Figure 10. Each
window instance represents an individual distance of the trajectory that reaches
from 202 meters to 500 meters. Thus, retrieving a result set that covers a certain
distance is not possible by a temporal tilting window.

Fig. 10. Distances of tilting window with ωsize = 250sec

5.3 Tilting distance window

The results of applying a tilting distance window with ω = 500m on the example
track is illustrated in Figure 11. Each of the 20 window instances (except the last
one) provides a result set that represents a segment of 500 meters. In contrast
to the conventional tilting window, the associated time interval is not fixed but
is correspondingly adapted. This adaptability is illustrated in Figure 12. The
interval of each window depends on the actual speed of the vehicle and is between
249 seconds and 499 seconds. In other words, in order to guarantee the coverage
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of 500 meters we need a temporal window of (at least) 499 seconds. In contrast
to the tilting distance, the average number of elements in that window would
be higher by a factor of 1.4. Thus, the main advantage of this operator over the
corresponding temporal window operator is that it guarantees the coverage of a
given distance without the need to overestimate a corresponding period of time.
This property also reduces the memory requirements significantly.

Fig. 11. Tilting distance window with ω = 500m

5.4 Tilting waypoint window

Figure 13 shows the resulting window instances of the tilting waypoint window.
57 consecutive waypoints (depicted as red points) were generated by the mission
plan for observing the targeted area with a resolution of 150 meters. The length
of the illustrated window instances and the number of assigned elements depend
heavily on the spatial distribution of the waypoints. Therefore, the length of the
segments varies from 132 meters (378 assigned elements) up to 704 meters (1912
assigned elements).

The corresponding time intervals of the window instances and their adapt-
ability to the actual situation are illustrated in Figure 14. Especially the first and
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Fig. 12. Tilting distance window with ω = 500m

Fig. 13. Tilting waypoint window

Fig. 14. Tilting waypoint window
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last segment provide a relatively large time interval because they represent the
segment of the trajectory where the vehicle drive towards the mission area and
drive back to the beginning. As an advantage, this operator has the ability to
split the trajectory into predefined segments by given points of interest. Again,
we need only to process elements that fulfill a given spatial condition. A com-
parable space partitioning cannot be achieved by pure time-based or row-based
windows.

Fig. 15. Jumping distance window with ω = 20m

5.5 Jumping distance window

Applying the jumping distance window for limiting the number of stream el-
ements is illustrated in Figure 15. The depicted example uses a window with
ω = 20m that provides one result set which is continuously extended over time.
As a result, the complete trajectory of about 10 kilometres leads to 543 elements
assigned to the window. This number corresponds to a reduction by a factor of
65 compared with the original data. In order to guarantee the same distance
by using a temporal window, we would need a time interval of 17 seconds in
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minimum. Such an interval would lead to 419 result sets á 85 elements. The
advantage of this window over the previously described operators is that a vast
amount of observations can be reduced to a few observations based on their
spatial distribution.

5.6 Area window

As described before, the area window uses a bounding geometry for limiting the
incoming stream elements. In the illustrated example in Figure, 16 ωarea is set
to the rectangle that defines the target area of the mission.

Fig. 16. Area window

If the vehicle only acts within the mission area, the result set will contain ev-
ery produced stream element. Thus, the stream of elements can be theoretically
boundless. The depicted trajectory consists of segments which are located out-
side the targeted area and thus are dismissed instantly. Based on the example,
about 29 thousands of observations are finally part of the result set while 6 thou-
sands are discarded. This behaviour allows focusing only on spatially significant
observations. Furthermore, the area window is very suitable to be combined with
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other windows. Its combination with the jumping distance query of Section 5.3
reduces that result set by 27 % to 395 relevant elements.

6 Summary and Outlook

Unmanned aerial and submersible vehicles generate data streams that are spatio-
temporal. Systems for processing such streams typically use temporal operators
for limiting the incoming elements. Established window operators like the sliding
and tilting window use time intervals as condition for validating and thus taking
only the temporal aspect into account. But, during a mission moving, vehicles
are faced with spatio-temporal challenges that need to be considered.

Table 1. Overview spatio-temporal window operators

Name Parameter Data type

Sliding distance window ω describes a distance double
Tilting distance window ω describes a distance double
Tilting waypoint window ω describes a set of waypoints point[]
Session distance window ω describes a distance gap double
Jumping distance window ω describes a distance double
Area window ω describes an area rectangle

In this paper, we presented the operators summarized in Table 1 for pro-
cessing spatio-temporal data streams. Depending on the type, they use different
parameters for defining the window condition. This comprises either a travelled
distance, a predefined mission area or fixed waypoints. In addition, the behaviour
of a window when it provides a new result set, depends on the window type as
well. For showing the benefits of the operators, we applied them on an example
vehicle trajectory.

The introduced operators use the spatial dimension as main condition. By
this, the temporal dimension is adapted. Thus, spatio-temporal window opera-
tors have several advantages over conventional operators: They can reduce the
number of elements in the result set, which lowers the memory and process-
ing requirements. Furthermore, they support the formulation of spatial queries
without the difficult task to estimate temporal conditions that often need an
overestimation. Finally, they allow us to formulate queries with higher spatial
semantics. The presented operators are especially useful for moving objects with
changing speed.

In future work, we plan to evaluate the performance of the spatio-temporal
operators. Furthermore, we have to consider the accuracy of the estimated vehi-
cle location, which depends on multiple factors. Especially vehicles that cannot
make use of the global navigation satellite system (GNSS) like AUVs are forced
to locate themselves by alternatives. Submersible vehicles can make use of an
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acoustic based positioning system that is typically associated with higher inac-
curacies than GNSS. In contrast to the introduced data set in Figure 2 locations
can have a large deviation. As soon as a window is based on distances such in-
accuracies can massively distort the calculated distances that may ends up in
false results. Thus, we need an operator for preventing such situations.

The presented set of operators supplements existing temporal window types
by introducing spatial capabilities. These operators are already sufficient for
supporting several kinds of scenarios in the domain of moving vehicles. But,
in some cases a combination of such operators would limit elements further
to unburden the endpoint application. Therefore, efficient ways to build such
cascades has to be developed.

Conventional spatial database systems are specialized on executing queries
to select and provide data as fast as possible. Such queries consist of multiple
operators that benefit massively from indexes that were built on table columns.
Depending on the application, some of the presented windows can have a vast
number of high dynamically elements. To speed up querying result sets based
on spatial conditions there is a need for index structures that are specialized
in high dynamic data. One approach is to adapt grid-based structures that are
spatially fixed to avoid continuous index reorganisation processes.
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