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Abstract. The adoption of electric vehicles has the potential to help decarboniz-

ing the transport sector if they are powered by renewable energy sources. Limi-

tations commonly associated with e-cars are their comparatively short ranges and 

long recharging cycles, leading to anxiety when having to travel long distances. 

Other factors such as temperature, destination or weekday may influence people 

in choosing an e-car for a certain trip. Using a unique dataset of 129 people who 

own both an electric vehicle (EV) as well as one powered by an internal combus-

tion engine (ICE), we analyze tracking data over a year in order to have an em-

pirically verified choice model. Based on a wide range of predictors, this model 

tells us for an individual journey if the person would rather choose the EV or the 

ICE car. Our findings show that there are only weak relations between the pre-

dictor and target variables, indicating that for many people the switch to an e-car 

would not affect their lifestyle and the related range anxiety diminishes when 

actually owning an electric vehicle. In addition, we find that choice behavior does 

not generalize well over different users. 

Keywords: Electric Vehicle, Transport Mode Choice, Mobility. 

1 Introduction 

Individual fossil fuel based transportation is a major contributor to greenhouse gas 

(GHG) emissions and thereby a serious threat to the global ecosystem [8, 36, 16]. With 

the imminent threat of climate change, the decarbonization of individual transportation 

has become one of the important questions of our time. In that context, renewable en-

ergy generation combined with electric vehicles (EVs) has great potential as it leads to 

significantly lower GHG emissions than internal combustion engine (ICE) cars [33, 14, 

12]. In line with this, many major car manufacturers started adding EVs to their product 

range and the share of EVs in global car sales is projected to be at around 35% by 2040 

[19]. However, while electrification is currently the most promising path towards a 

more sustainable transportation sector, the large-scale adaption of EVs is a slow process 

and people still associate EVs with uncertainties: “How far can I drive with a fully 

charged vehicle? Will I have charging stations on the way to my destination? How 
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quickly does the battery wear out?” Such questions are commonly at the center of dis-

cussion when someone considers switching to an EV. As a result of this mistrust, EVs 

are often bought as an additional second car, complementary to the ICE car [13]. The 

resulting group of people is over-equipped with mobility tools and potentially has to 

decide for every trip whether to use the EV or the ICE car. A closer look at their mo-

bility behavior can offer valuable insights about the choice between these two transport 

modes. Knowing when and why people prefer the ICE car over the EV may reveal some 

of the factors that are still slowing down EV adaption. Furthermore, being able to pre-

dict this choice can be used to optimize smart charging applications or also to offer 

automated and personalized route planning. 

In this study, we analyze a tracking dataset of 129 persons who own an ICE car and 

an additional (compact class) EV as second car. We control their mobility choice be-

havior on three types of factors: trip descriptors (e.g., length, duration or trip purpose), 

socio-demographic factors and spatio-temporal context data. Given the limited range 

of EVs and the well-known issue of range anxiety [7], we hypothesize that we can 

explain the mobility choice by the distance of the trip as the primary influencing factor, 

followed by (less important) influencing variables such as the duration of the planned 

trip (e.g. several hours vs. several days), the temperature (due to an increased heating 

demand the range of EVs is decreased in cold weather), or the weekday of the departure 

(e.g., on weekends, people might want to use the ICE car due to being more spacious 

or luxurious than the compact class EV). 

We find that while these factors can indeed be used to infer the transport mode 

choice, their impact on the overall prediction accuracy is small, and the herein evaluated 

models are of comparably low explanatory power. It turns out that for most of their 

travels, the participants of the study chose the EVs independently of the predictors an-

alyzed within this paper, and instead make their choice largely dependent on other con-

textual factors (such as traveling with the family). This is good news for everyone con-

sidering buying an electric vehicle: In practice, for most trips performed, people do not 

seem to prefer one of the drive technology over the other. As part of our experiments, 

we additionally evaluated how well our models generalize across different users. We 

found that the fitted models are hardly transferable to unseen users but that the 

knowledge about individual users greatly increases the prediction accuracy for these 

users. This is an additional hint that while there are only weak relations between the 

examined features and the mode choice, the users’ mode choice behavior is unique and 

regular. 

The rest of this paper is structured as follows: In Section 2, existing mode choice 

models are evaluated, in particular with respect to EVs. Section 3 introduces the dataset 

in more detail and explains the various preprocessing steps. The different models eval-

uated are presented in Section 4, and their results and predictive power in Section 5. 

Finally, we discuss and conclude the paper in Section 6. 
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2 Related Work 

2.1 Transport Mode Choice 

Choices of transport modes differ widely, between individuals as well as between coun-

tries. For example, the work by Zhao et al. [37] developed a clustering-based frame-

work to understand individuals’ travel mode choice behavior in multi-modal transpor-

tation. It is shown that the users exhibit different patterns in spending time by car and 

EV. Buehler [5] analyzed the travel mode choice in Germany and USA using compa-

rable travel surveys. It is reported that Germany and America have significant differ-

ences when it comes to the travel behavior of their citizens, with Germans making a 

four times higher share of trips by foot, bike and public transport, even though they are 

both developed countries and have very high motorization rates. Moreover, previous 

studies demonstrated that travel mode choice is influenced by various factors, including 

individual socio-demographic information [32, 2], travel characteristics (e.g. distance, 

duration) [6], weather conditions [17], etc. 

In recent years, a series of transport mode choice models were developed based on 

the above-mentioned influence factors, among which logit models are one of the most 

widely-used forms (cf. [9, 28, 27, 24, 2, 15]). For instance, in the work by Bin Miskeen 

et al. [27], a binary logit model was developed to model the interurban travel mode 

choice behavior in Libya. Specifically, the probability of car drivers shifting to the use 

of buses was examined. Lee et al. [15] compared the performance of a Multinomial 

Logit Model (MNL) with four types of Artificial Neural Networks (ANN) for travel 

mode choice modeling. The results indicate that the ANN models are superior to the 

MNL model, however the ANN models still struggle to achieve the same level of ex-

planatory power and robustness as the MNL model does. Although there are several 

studies that investigate people’s transport mode choice with logit models, little attention 

has been paid to study influence factors on the choice between ICE car and EV. This 

paper builds upon a comprehensive empirical study that explores the influencing factors 

by modeling the choice between ICE car and EV. 

2.2 Anxiety and E-cars 

In the discussion about EV adoption, an important factor is range anxiety, i.e., the con-

cern of (potential) users of electric cars that the restricted range of EVs will restrict their 

mobility options. Several studies have shown that EVs can cover much of a user’s mo-

bility needs, but not all. For instance, Pearre et al. [25] analyzed the user behavior in 

Atlanta, USA, and came (among other findings) to the result that 100 miles or more of 

daily driving occurs on average only on 23 days in the year. In addition, Woodjack et 

al. [34] show that users can, to some degree, adapt their travel behavior and range anx-

iety decreases over time. Tamor and Milacic [31] discuss in more detail why modest-

range EVs in multi-vehicle households are a more cost-effective means to electrify per-

sonal travel than general-purpose EVs, not taking into account government interven-
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tions. Given that background, it is desirable to have a deeper understanding of the mo-

bility behavior of people with access to EVs and ICE cars, which is what we want to 

achieve with this study. 

2.3 E-car Choice Models

Present studies about EV choices mostly focus on the choice to buy an EV rather than 

the factors of the decision when to use it. Several studies analyzed the socio-demo-

graphic characteristics of EV-adopters, with mostly consistent results. Electric car use 

is shown to be positively associated with being male, middle-aged (30-50), being mar-

ried and having a high income level and higher education. In addition to that, Simsek-

oglu [30] analyzed the socio-demographic characteristics of people owning a conven-

tional car, an e-car and both a conventional and an electric car. Their finding was that 

the latter two have a more similar profile than sole conventional owners with one of the 

others. 

Zhang et al. [35] examined how consumer choices are influenced by car specifica-

tions, prices and government incentives with using a Random-Coefficient Discrete 

Choice Model. It is found that EV technology improvements, toll waivers and charging 

station density have positive effects on EV demand for both private consumers and 

business buyers. The work by Lebeau et al. [14] explored the choice of EVs in city 

logistics. The results suggested several important measures, such as developing a larger 

charging infrastructure, implementing financial incentives through subsidies or tax ex-

emption. Concerning governmental incentives to promote EV adoption, it has been 

shown that measures that reduce the purchase price for customers have the highest im-

pact [1]. 

Literature that analyzes the choice of households that own an EV and an ICE car is 

very rare. We could identify only a single study that took place in Denmark [10, 11]. 

The study took place from 2011 to 2014 and over this time, 567 households received 

an EV for about three months. All households were required to already own an ICE 

vehicle in order to participate in the study. As the study period was in the early years 

of EV adoption, the distributed EVs had an effective range of only about 90 km (150 

km of advertised range). In [10], weekends, temperature, precipitation and wind speed 

were reported as significant factors, however, their explanatory value (e.g., effect size) 

was not reported. Interestingly, the trip distance was not a significant factor for the 

choice between transportation modes. Even though this last finding is rather surprising, 

it was not further discussed in [10]. The work in [10] represents only a single point of 

evidence where study participants are observed over a short period of time using early-

year EVs. We plan to extend this work by investigating the explanatory value of the 

analyzed factors and by further investigating the influence of the trip distance. 
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3 Data 

For our empirical analysis, we used data from a large-scale pilot project that evaluated 

the use of a comprehensive Mobility as a Service (MaaS) package [21]. For the duration 

of one year, 138 Switzerland-based participants were given a battery electric vehicle 

(with a range marketed as 300 km), a general public transport pass valid for the whole 

region, as well as access to several car- and bike-sharing programs. 129 of those par-

ticipants previously already owned an ICE car and continued using it throughout the 

one-year study period, during which they also had to install a GPS-tracking app on their 

smartphones which recorded their mobility behavior (with a median time of 13.9 sec-

onds between two consecutive GPS positionfix recordings). Additionally, the move-

ment of the EV and the state of the EV (including state of charge of the battery) was 

recorded. 

The app-based tracking data was automatically segmented into so-called staypoints 

whenever a user is stationary (e.g., not moving out of a small radius for a non-negligible 

amount of time). The study participants labeled the staypoints in the app with a high-

level purpose (one of home, work, errand, leisure, wait, and unknown). We call a stay-

point an activity if it has an important purpose (everything except for wait and unknown) 

or if its duration is longer than 25 minutes. All movements between two activities are 

summarized as a trip. A trip is segmented in triplegs, whereby a tripleg describes all 

continuous movement with the same mode of transport and without line changes (for 

public transport). Users labeled triplegs with a mode of transport (one of car, e-car, 

train, bus, tram, bicycle, e-bike, walk, and a range of less frequently used transport 

modes such as airplanes, boats or coaches). The app makes label suggestions for the 

mode of transport and the activity purpose that a user can either accept or correct. 

Fig. 1. Triplegs and staypoints recorded within the SBB Green Class study in 2017. 

The study participants were tracked starting from November 2016 to the end of Decem-

ber 2017. In total, the 138 participants generated approx. 230 million GPS positionfixes, 

segmented into 326’926 staypoints, 242’012 trips, and 465’195 triplegs. Figure 1 shows 
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the distribution of tripleg transport modes on the left and the distribution of staypoint 

purposes on the right. Out of all triplegs 122’063 were either covered by car (42’739; 

35.0%) or e-car (79’324; 65.0%), which resulted in a total distance of 1’450’401 km by 

car and 1’258’553 km by e-car. 

The motivation of study participants usually decreases over time. This resulted in 

study participants taking less care when validating the detected transport modes. In par-

ticular the distinction between car and e-car/EV is difficult from GPS data alone, which 

is why a careful and trustworthy validation would be of essence. As we are unable to 

force study participants to validate their input, we additionally use the data collected by 

the EV itself for validation. This data includes the start and end locations of each drive 

registered by the EV, with an associated change in kilometers and state of charge (SoC). 

The matching of both datasets is tricky because both are subject to different spatio-

temporal uncertainties. We use the rule-based approach for the matching of app-record-

ing and EV-recording pairs described in [21]. This approach considers the spatio-tem-

poral distance between start and end points, the temporal overlap and the ratio of the 

length of the app-tripleg and the difference in the km-counter of the EV. Afterwards, 

we checked for consistency in sequences of trips, in order to ensure that impossible 

combinations like driving to work by car and back by EV do not appear in the dataset. 

In addition, we used weather data collected by the automatic weather monitoring 

network of the Swiss Federal Office of Meteorology and Climatology MeteoSuisse1. 

As this data is only available at certain measurement locations, it was interpolated spa-

tially and temporally following the method outlined in [4]. In essence, a temperature 

correction coefficient that is dependent on the distance to the closest weather stations 

as well as on the difference in elevation is computed and applied to every GPS posi-

tionfix for which a temperature measurement is required (usually the start of triplegs 

and trips). From the automatic weather monitoring network, the temperature as well as 

the precipitation were extracted, as these are generally the weather factors influencing 

transport mode choice the most. Figure 2 shows the measurements at the beginning of 

each tripleg as well as their average over the year. 

Finally, the study participants were asked to fill in a range of surveys. Of particular 

importance are the socio-demographic features recorded this way, a selection of which 

is shown in Table 1. It is visible from this data that there is a bias towards male partic-

ipants with above average age and income. The demographic data corresponds to the 

study participants, however, the car can theoretically be used by anyone in the house-

hold. As not all of the participants have both an electric and an ICE car, we removed 9 

people who did not own a car at the time the study started, which resulted in 129 par-

ticipants whose data are used for the analysis presented below. 

1 For information about the automatic weather monitoring network of MeteoSuisse consider 

https://www.meteoschweiz.admin.ch/home/mess-und-prognosesysteme/bodenstationen/au-

tomatisches-messnetz.html.  
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Fig. 2. Temperature and precipitation at the start of each tripleg over the course of the one-year 

study period as well as the average as bold line. The offset in the beginning results from a slightly 

delayed start of the study and the fact that participants received their EV on different dates. 

Table 1. Features taken from the socio-demographic survey and used within the models pre-

sented in this paper. Note that the median income is exactly CHF 17’500 as this variable was 

measured as one of the following classes: {6’500, 10’000, 13’500, 17’500, 22’500}. *Number 

of cars prior to receiving the EV. The 9 participants without cars are not considered in the other 

distributions in the table. 

Feature Distribution 

Sex 111 male (86.0%) 

18 female (14.0%) 

Number of cars in household* 9 with 0 cars (6.5%) 

47 with 1 cars (34.1%) 

67 with 2 cars (48.6%) 

12 with 3 cars (8.7%) 

3 with 4 cars (2.2%) 
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Work status 118 working full-time (91.5%) 

10 working part-time (7.8%) 

1 not working (0.8%) 

Household size (no. of people) 11 with 1 person (8.5%) 

36 with 2 persons (27.9%) 

24 with 3 persons (18.6%) 

33 with 4 persons (25.6%) 

19 with 5 persons (14.7%) 

6 with 6+ persons (4.7%) 

Age 47.3 ± 7.6 years 

Household income 16’791 ± CHF 4’358 

(median CHF 17’500) 

Total 129 eligible participants 

4 Method 

In our work, we analyze the users’ mobility choice behavior on two levels: The atomic 

tripleg and the aggregated tour level. We choose to analyze the mobility behavior on 

the tripleg level because it is the smallest unit in which we measure movement. How-

ever, it is likely that choices between taking the ICE car and the EV cannot be explained 

solely on a tripleg level. This becomes clear if we look at the example of a user that 

leaves home in the morning to go to work, goes shopping after work, and then returns 

home. If such users choose to go to work using the EV, they will be forced to also take 

the EV in the evening for their errands and the way home. Looking at complete tours 

allows us to more closely follow the decision process of a user, who always has to take 

the complete mobility chain until reaching the initial position again into account. Even 

if both perspectives are different, we expect that there will be a large overlap between 

the mode choice models on the tripleg level and the tour level model. 

4.1 Data Preprocessing 

Based on the staypoints and triplegs provided by the tracking app, we use a hierarchical 

model of human mobility to extract trips (explained in Section 3) and tours. A tour is 

defined as a closed loop in the daily mobility of a user. This means we add all triplegs 

to the same tour that fulfill all of the following requirements: 

 End respectively start less than 350 meters apart from each other.

 Were undertaken on the same day (± 12 hours).

 Are longer than 350 meters.
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All tours that start and end at the user’s home location are called home-based tour or 

journey. In general, it is possible for tours to contain sub-tours. An example for a typical 

journey that contains a sub-tour is the following: A person wakes up at home, takes the 

car to go to work, walks to a local grocery store during her break to buy snacks and 

some groceries, then goes back to work and drives home after she is finished. Here, all 

trips undertaken are part of the user’s journey and the trip to the supermarket and back 

is a sub-tour. Our method is implemented such that also sub-tours are detected. For our 

analysis, we consider all tours that contained either a minimum of one tripleg covered 

by car or e-car and start and end at a user’s home (i.e., all journeys). 

4.2 Outlier Removal and Downsampling of the Majority Class 

As the dataset is from a smartphone-based tracking study it is subject to noise and un-

certainty. This can include sudden jumps, positions that are frozen over a longer period 

of time or gaps. We filter these tracking-related outliers by excluding triplegs that have 

an abnormally high average speed or abnormally low average speed2 and in a second 

step, we fit a robust 2-dimensional normal distribution to the length-duration distribu-

tion of the triplegs and exclude the least-likely 3% of the data. 

The final data after filtering includes 39’409 car triplegs, 73’388 e-car triplegs, 9’339 

car tours and 24’550 e-car tours. To avoid bias when reporting results, we randomly 

sample from the majority class without replacement such that the tour and tripleg da-

taset are class-balanced with respect to the transport mode (car or e-car). This leads to 

a new dataset of 78’818 class-balanced triplegs and 18’678 class-balanced tours. 

4.3 Feature Engineering and Extraction 

To analyze the choice of a specific user, we test variables from three different catego-

ries: socio-demographic variables sourced from user surveys, tour respectively tripleg 

descriptors recorded by the tracking app (and enhanced by the EV data) and spatio-

temporal context variables created by combining the available data with other environ-

mental datasets, most notably the temperature and precipitation. 

Table 2 shows all the features that we used as predictors in the models for the tripleg 

and the tour based approaches. As not all the data is available on the tour level (in 

particular, only the aggregate of all triplegs can be considered when modeling mode 

choice on a tour level), the predictors resp. models slightly differ. The features shown 

in Table 2 are the features that were originally generated, however, many of them are 

only marginally useful as predictors, and thus not always reported anymore. The tripleg 

length is computed based on a map-matched geometry, i.e., all positionfixes making up 

2 We consider an average speed of more than 220 km/h and less than 3 km/h as abnormal. 
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a tripleg were matched to the respective transport network using the map matching al-

gorithm available through the Open Source Routing Machine (OSRM) [18]3. The pur-

pose of a trip is the next activity’s purpose, while the purpose of a tour is computed 

using a majority vote on the purposes of all the staypoints visited during the tour. For 

the spatio-temporal context, we always considered the starting time of the tripleg resp. 

tour (e.g., the temperature is simply taken at the location and time of the first positionfix 

of the respective tripleg or tour). The socio-demographic features were attached to each 

tripleg resp. tour based on the user ID and used as independent variable similar to the 

tripleg/tour descriptors and spatio-temporal context. 

Table 2. The different features used for this study and the respective variable’s type. Nominal 

variables are encoded as dummy variables, each denoting the presence of one of the labels. *For 

tour-level analyses these features are not used. **Prior to the start of the study. ***Normalized 

to lie in [0, 1]. 

Feature Type Coding 

Tripleg/Tour descriptors 

Tripleg length* Ratio [0, ∞) 

Tripleg duration* Ratio [0, ∞) 

Length of all triplegs in tour cov-

ered either with car or e-car 

Ratio [0, ∞) 

Tour length Ratio [0, ∞) 

Tour duration Ratio [0, ∞) 

Previous staypoint duration* Ratio [0, ∞) 

Next staypoint duration* Ratio [0, ∞) 

Purpose of trip* Nominal {home, work, errand, leisure, 

wait, unknown} 

Purpose of tour Nominal {home, work, errand, leisure, 

wait, unknown} 

Socio-demographic data 

Sex Nominal {male, female} 

Age Ratio [0, ∞) 

Cars in household** Ratio [0, ∞) 

Employment status Nominal {working, not working} 

Household income Ratio [0, ∞) 

3 The OSRM can be downloaded from http://project-osrm.org. 
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Household size Ratio [0, ∞) 

Spatio-temporal context 

Hour of day*** Ordinal {0, 1, …, 23} 

Weekday/weekend Nominal {weekday, weekend} 

Month of year*** Ordinal {1, …, 12} 

Temperature at start Interval [-273.15, ∞) 

Precipitation at start Ratio [0, ∞) 

Some of the values for the features were missing and were imputed using the median 

of all available data for this variable. For triplegs, 4% (5’328) of the values for sex, age, 

cars in household, employment status and household size (1 user), and 15% (17’209) 

of the values for household income were missing. As the tours are based on the same 

data, they show a similar pattern of missing data. Finally, all the nominal predictors 

having more than two classes were encoded using dummy variables. This means that 

instead of having one feature that denotes the purpose, we instead have six features that 

indicate if the purpose was one of the given six categories in a binary fashion (one-hot 

encoding). 

4.4 Modeling E-Car Choice 

To determine the suitability of the introduced features for predicting the mode choice, 

we run the following 4 experiments for the tripleg and the tour level. 

Random Forest Model. In the first experiment, we fit a random forest (RF) classifier 

on all features to predict the choice of all users. RFs are a class of ensemble models that 

combine several decision trees with random feature selection on bootstrapped samples 

(a variation of bagging with decision trees). RFs were introduced in [3] and are robust 

against overfitting and require little hyperparameter tuning. A RF is a non-linear clas-

sifier that usually performs close to the state-of-the-art on tabular data for regression 

and classification problems. However, while the visualization of decision boundaries 

and the variable importance offer some degree of explainability for RF-models, it is 

hard to understand the exact relationship between inputs and the target. We therefore 

use the RF model to create an upper-boundary baseline for the accuracy and fit logistic 

regression based mode-choice models for interpretation. 

Logit Model. To get a better and more interpretable understanding of the relationship 

between input variables and the decision of the user to take the ICE car or the EV, we 

fit a logarithmic regression model (logit). Logits are the widely accepted standard in 

transport planning for mode-choice models (cf. [9]), especially because of their capa-

bility to work with mixed integer and continuous input variables and their interpreta-

bility. However, due to their linear nature, all non-linear and all cross-relations between 

11 of 23

AGILE: GIScience Series, 1, 2020. 
Full paper Proceedings of the 23rd AGILE Conference on Geographic Information Science, 2020. 
Editors: Panagiotis Partsinevelos, Phaedon Kyriakidis, and Marinos Kavouras 
This contribution underwent peer review based on a full paper submission. 
https://doi.org/10.5194/agile-giss-1-2-2020 | © Authors 2020. CC BY 4.0 License.



inputs and the target have to be precalculated explicitly. We define the logistic regres-

sion model that predicts the probability of the target variable being 1 as 

𝑝𝑙𝑟(𝑥𝑖) =
1

1 + 𝑒−𝑥𝑖
𝑇𝛽

(1) 

where 𝑥𝑖 is the ith vector of observations and β are the weights of the model. We fur-

thermore define the logistic per-sample loss as 

𝐿𝑠𝑎𝑚𝑝𝑙𝑒 = −𝑦𝑖 log(𝑝𝑙𝑟(𝑥𝑖)) − (1 − 𝑦𝑖) log(1 − 𝑝𝑙𝑟(𝑥𝑖)) (2) 

where 𝑦𝑖 is the true binary label associated with the ith observation. We identify the

parameters β by minimizing the following regularized total loss function 

𝐿𝑟𝑖𝑑𝑔𝑒 = ∑ 𝐿𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖 , 𝑦𝑖) + 𝜆 ∑ 𝛽𝑗
2

𝑚

𝑗=1

𝑛

𝑖=1

(3) 

where α is a tuneable hyperparamter, n is the number of data points, 𝛽𝑗  is the jth model

parameter and m is the number of model parameters. The predictions 𝑝𝑙𝑟(𝑥𝑖) are used

to create the following classifier: 

𝑓(𝑥𝑖) = {
0 𝑖𝑓 𝑝𝑙𝑟(𝑥𝑖) < 0.5

1 𝑖𝑓 𝑝𝑙𝑟(𝑥𝑖) ≥ 0.5
(4) 

To make up for the linearity of the logit model, we manually transform some features 

based on their histograms. In particular, if a feature shows a periodic pattern (e.g., the 

temperature over the course of a year) or follows a power law (e.g., the distance trav-

elled), we apply a trigonometric resp. a logarithmic function. The resulting transformed 

features are directly used as input for the logit model. 

User Specific Models. In the final experiment, we want to investigate the generaliza-

tion properties of the random forest and the logit models for the given problem. We 

refit the same RF and logit models but use a user-specific data split for the cross-vali-

dation scheme.  

This means that the set of users in the training data and the set of users in the test 

data are disjunct. This test allows us to analyze if the random forest model could actu-

ally identify underlying user-independent rules that explain under which circumstances 

people prefer to take an EV or an ICE car. If the random forest fails to generalize in 

this experiment, it indicates that it simply remembers user-specific patterns and prefer-

ences. 

4.5 Model Performance Metrics 

We use two metrics to evaluate the performance of the proposed models: Accuracy and 

𝑅2. Accuracy is a widely accepted and easy to interpret classification metric that is 

defined as 
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𝑎𝑐𝑐 =
𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑦𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

(5) 

where 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡 and 𝑦𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 are the counts of correctly and incorrectly classified sam-

ples, respectively. Accuracy is very easy to interpret but it is misleading if class counts 

in the sample are unbalanced. As we operate in a binary classification regime, 50% 

accuracy corresponds to random guessing. 

As a second metric, we report the McFadden (pseudo) 𝑅2 introduced in [23]. This 

score represents an alternative to the well-known 𝑅2 score which is not meaningful for 

binary classification tasks. The McFadden pseudo 𝑅2 is defined as 

𝑅𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛
2 = 1 −

ln 𝐿1

ln 𝐿0

(6) 

where 𝐿0 is the likelihood of the null model (a model only fitted with the intercept) and

𝐿1 is the likelihood of the controlled model. As the logarithm of the likelihood is always

negative, the log-likelihood of a good model goes towards 0 and because 𝐿0 is constant,

this drives the McFadden score towards 1. The other way around, if the analyzed 

model’s log-likelihood is similar to the one of the null model (this means without great 

explanatory value), then the McFadden pseudo 𝑅2 score goes towards 0. While this 

behavior is similar to the regular 𝑅2, the values of the McFadden pseudo 𝑅2 are usually 

significantly lower, such that a score above 0.2 is already considered good [22]. We 

calculate the McFadden pseudo 𝑅2 score according to Equation 6 using a logit model 

only containing an intercept as the null model. This means the fitted model is able to 

only predict a single constant for all samples. The logit model is fitted without any 

regularization and using the Limited-memory BFGS (cf. [20]) solver. 

5 Results 

In the following, we describe the fitting of the final models used for each of the exper-

iments and report their accuracy, pseudo 𝑅2 and the significance and importance of 

various predictors. Furthermore, we will quickly elaborate on the most important take-

aways for each model. A comparative discussion of the different models and the impli-

cations on the mode choice problem is given in Section 6. All the data preprocessing 

and all the models were implemented in Python using the scikit-learn [26] (for the ran-

dom forests) and statsmodels [29] (for the logistic regression) libraries. 

5.1 Random Forest Models 

The random forest baselines for the tour and the tripleg level experiment simply use all 

features introduced above to predict the binary outcome {car, e-car}. For both models, 

we chose 1000 trees, the Gini impurity as quality criterion, the square root of the total 

number of features as the number of features per split and an unrestricted tree depth as 

hyperparameters. The data was randomly split according to a 3:1 proportion; while the 
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first 75% were used to train the RF, the remaining 25% were used to compute the ac-

curacy of the prediction (cf. Section 4.5). 

Table 3. Accuracies and pseudo 𝑅2 for the models used within this paper.

Model Accuracy Pseudo R2 

Random Forest Triplegs 78.86% 0.3060 

Random Forest Tours 74.04% 0.2198 

Logit Triplegs 59.00% 0.0195 

Logit Tours 58.46% 0.0328 

Random Forest Triplegs (User Split) 65.40% 0.1032 

Random Forest Tours (User Split) 59.96% 0.0273 

Logit Triplegs (User Split) 57.28% 0.0055 

Logit Tours (User Split) 52.43% -0.0072

Table 3 shows the values for accuracy and the pseudo 𝑅2 for the different models. Fig-

ure 3 contains the same information, visualized for a more immediate comparison of 

the models. The baseline RF reaches an accuracy of 78.86% on the tripleg level, and 

74.04% on the tour level, indicating that it is feasible to predict if someone chooses the 

ICE car or the e-car. Similarly, the high pseudo 𝑅2 values of 0.3060 resp. 0.2198 indi-

cate that the predictors (in their aggregation) are able to explain the variance in transport 

mode choice well. 

Fig. 3. Accuracies vs. pseudo 𝑅2 and feature importances of all the models evaluated within this

work. 
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5.2 Linear Logistic Regression Models 

To have a more readily interpretable model, we fitted a logit model (only considering 

linear superpositions) between the features and the discrete target. The here presented 

models for triplegs and tours are the result of both a manual search for a model that 

balances explainability and prediction ability as well as an automated model finding 

process. 

Mode Choice on a Tripleg Level. Table 4 shows the chosen predictors for the logit 

model on the tripleg level, and their model parameters and significances. The omitted 

predictors (compared to all the features displayed in Table 2) were either not significant 

given the training data, or did not substantially add to the model. It can be seen that the 

presence of the long-distance marker (triplegs longer than 100 km) strongly drives the 

choice, as do the distance and duration related predictors as well as the weekday/week-

end marker. Note that since the models are not normalized (except the hour of day and 

month of year features, cf. Table 2), the coefficients cannot be directly used to compare 

the importance of different predictors. However, having these non-normalized coeffi-

cients allows for example comparing the influence of the difference in 1° Celsius with 

a distance increase of 10 km. From the model, it can be seen that the weather context is 

only minimally important, as is the age, household size and hour of day. 

Table 4. Model parameters and predictor significances for the tripleg logit model. *Significant 

at the p < 0.05 level. 

Feature Coefficient Std. Error z-Value p-Value

Intercept 3.7693 0.310 12.175 0.000* 

Weekday/weekend -0.4806 0.017 -27.879 0.000* 

Temperature 0.0078 0.001 7.719 0.000* 

Precipitation 0.0394 0.012 3.244 0.001* 

Sex -0.1872 0.025 -7.638 0.000* 

Age 0.0086 0.001 8.037 0.000* 

Numbers of cars in household -0.0636 0.012 -5.425 0.000* 

Work status 0.3381 0.023 14.635 0.000* 

Household size 0.0689 0.006 11.811 0.000* 

Long-distance tripleg -1.7695 0.064 -27.848 0.000* 

log(duration of next activity) 0.0776 0.005 14.868 0.000* 

log(duration of prev. activity) 0.0852 0.005 15.984 0.000* 

log(duration of tripleg) -0.3136 0.018 -17.038 0.000* 

log(length of tripleg) 0.2011 0.014 14.614 0.000* 
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log(household income) -0.4286 0.031 -14.023 0.000* 

sin(hour of day) 0.0928 0.011 8.359 0.000* 

sin(month of year) 0.2385 0.011 21.001 0.000* 

The logit model is greatly outperformed by the corresponding random forest. With an 

accuracy of 59% and significantly lower pseudo 𝑅2 values the logit model is clearly the 

less powerful model. This is an indication that many of the relations that the RF model 

learned from the randomly split data are non-linear and not included in our self-gener-

ated more obvious set of non-linear features. 

Mode Choice on a Tour Level. Looking at the logit model on the tour level (shown in 

Table 5), we see a similar distribution of predictor coefficients. Again, the presence of 

the long-distance marker has a substantial influence, just as the other distance-related 

predictors do. It seems that the overall length of the tour is a more important criterion 

than the parts covered by car resp. e-car. Again, and also indicated by the p-values, 

there is no significant relation between contextual factors such as the temperature, pre-

cipitation, or household characteristics. It needs to be noted that the interpretation of 

the impact of sex and work status on the mode choice is difficult as there is a large bias 

towards working males in our dataset. The accuracy of the model similarly drops to 

around 58.5%, with a corresponding 𝑅2 score of 0.0328, indicating that the model is of 

lower explanatory power than the corresponding random forest model. 

Table 5. Model parameters and predictor significances for the tour logit model. *Significant at 

the p < 0.05 level. 

Feature Coefficient Std. Error z-Value p-Value

Intercept -1.7069 0.611 -2.792 0.005* 

Weekday/weekend -0.4440 0.035 -12.632 0.000* 

Temperature -0.0018 0.002 -0.850 0.395 

Precipitation -0.0357 0.029 -1.238 0.216 

Sex -0.1451 0.049 -2.975 0.003* 

Age 0.0078 0.002 3.503 0.000* 

Numbers of cars in household -0.0250 0.024 -1.030 0.303 

Work status 0.6985 0.260 2.689 0.007* 

Household size 0.0900 0.012 7.509 0.000* 

Long-distance tour -0.5116 0.053 -9.670 0.000* 

log(length of all triplegs by car 

or e-car) 

0.0464 0.009 5.206 0.000* 
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log(length of tour) 0.1006 0.020 5.066 0.000* 

log(duration of tour) 0.0620 0.017 3.704 0.000* 

log(household income) -0.0584 0.062 -0.940 0.347 

sin(hour of day) 0.1443 0.024 6.043 0.000* 

sin(month of year) 0.1223 0.023 5.282 0.000* 

5.3 Random Forest - User Split 

As random forests are very robust non-linear models, they are prone to learn “hidden” 

connections in the data that lead to non-generalizable results. To test for these effects, 

we here present the results from applying the same RF model to the tripleg and tour 

data, but restricting training to a subset of users, and testing on another. 

Looking at the reported values in Table 3 (comparing the entries for Random Forest 

and Random Forest (User Split)), it is easily visible that the RF model does not gener-

alize well across users. Making predictions about unknown users lets the accuracy of 

the random forest drop by about 15% in both cases. The pseudo 𝑅2 shows a similar 

decrease, meaning that the explanatory value of the user-independent model drops sig-

nificantly. Considering that a random prediction would already yield an accuracy of 

50% in the given case, the resulting accuracy of about 60% is only a slight improve-

ment. This performance drop is evidence that the random forest trained using a random 

data split is remembering the users’ decisions instead of identifying underlying general 

rules. 

Fig. 4. Feature importances in the random forest model including a user split. On the left side, 

the importances for the tripleg model are shown, on the right side the ones for the tour model. 

Figure 4 shows the feature importances extracted from the RF model. Similar to the 

logit models, the length and duration features are most important for the mode choice. 

This shows that the same features can be used to identify (weak) generalizable rules as 

well as identifying the user’s unique (e.g., non-generalizable) mobility behavior. 
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5.4 Linear Logistic Regression Models - User Split 

Finally, we included the results of a logistic regression model trained on a subset of 

users and evaluated (for accuracy) on another subset of users. As expected, the results 

in Table 3 show that the original logit model already generalizes well, but thus also has 

a substantially lower explanatory power. We do not report the complete models here, 

as they do not substantially differ from the ones in Tables 4 and 5. 

6 Discussion and Conclusion 

Driven by goals of sustainability, related monetary incentives and technological ad-

vances, people buying a new car today have to decide between an electric vehicle and 

a regular internal combustion engine car. For many, this poses a difficult decision as 

they are usually not aware of how the limited range, refueling capacity and differing 

storage and driving characteristics might influence their future driving behavior. Using 

a unique constellation of people that have both types of cars at their service and have 

to take the decision whether to take the EV or the ICE car every day, we try to give 

insight into the decision process that leads to people choosing one type of car over the 

other. We analyze data from 129 ICE car and EV owners of a real-life study (involving 

138 participants in total) that were tracked over the duration of a year via an app on 

their phone and via the EV itself. The chosen measures of interest are the accuracy in 

predicting the transport mode of previously unseen triplegs and tours and the 𝑅2 which 

summarizes the explanatory power of the models. To have both a well-performing up-

per bound as well as more easily interpretable models, we fit random forests and logit 

models to features extracted from the raw data. These features are chosen with respect 

to the uncertainties related to EVs, namely the distance and duration of trips, the 

weather, personal background, and more. 

Looking at the presented results in detail, there are several interesting takeaways. 

Even though all models are better than a random guess, their predictive power is com-

parably low. Only the random forest that is trained on data from all the users manages 

to reach both a high accuracy as well as a high 𝑅2 score. This is a strong indication that 

the random forest simply learns to identify individual users by unique combinations of 

features, and thus also that for each user individually most mode choices follow a sys-

tematic pattern (resp. on the same trips, e.g., going to work, a single user will in most 

cases choose the same mode of transport). Training the models on a subset of people 

confirms the hypothesis that the logit models generalize as well as can be expected, 

namely in a similar range as the random forests on the user-split data. Looking at the 

predictors, we can see that the distance and duration, but also if the tripleg or tour took 

place on the weekend influence the choice more than factors such as the household size 

or age of the participant. However, contrary to our initial assumption and hypothesis, 

all predictors are of a weak nature, i.e., while they manage to positively influence the 

predictions, the resulting accuracies are still only slightly better than a random guess. 

A potential reason for this might be that the choice between ICE car and EV is mainly 

driven by variables not measured as part of the study: the size of the cars (which we 
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only know for the EV), the number of people participating in a trip, the necessities of 

other household members, or the overall distribution of work and household duties 

within a family. Clustering people into groups based on these variables, or also based 

on the number of cars or people in a household could reduce the variability in the (sub-

)datasets, thus increasing the predictive power of the presented models and explain bet-

ter why someone chooses the ICE car or EV in a given situation. It is similarly inter-

esting that the prediction of the transport mode choice for individual triplegs seems 

easier than for complete tours. We suspect that this is due to the fact that there are more 

triplegs that appear in a very similar fashion in the dataset (e.g., a single home-work-

home tour results in two triplegs that exhibit almost the same characteristics: one from 

home to work, and another one back). As such, we have to consider the lower predictive 

power of the tour level models as a “realistic” view on how a person would choose the 

transport mode in a real situation. 

Comparing our research to previous studies, it is in line considering the importance 

of individual features. However, our findings of comparatively low predictive power of 

the different models indicate that looking at a general population, their choices are not 

easily predictable and are determined by features that cannot be captured by GPS track-

ing or simple socio-demographic surveys alone. Considering all this, our work provides 

an addition to the scarce literature on car and e-car choice models, but should be ex-

tended with more in-depth analyses of additional transport mode choice predictors in 

the future. Similarly, our focus was limited to choice predictions based on individual 

data: Future work should capture the complexity of mobility choices in a more holistic 

way, e.g., by closely observing other household members as well. For individual driv-

ers, it seems that they will not have to worry too much about the limited range or charg-

ing infrastructure, though, as the choice for one mode or the other is only marginally 

explained by the distance covered. 
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