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Abstract. Considering the 2011 Great East Japan Earthquake, by utilizing GPS 

based large-scale people flow data, we developed a home-return model consid-

ering city variables that can estimate the rate of people who will have returned 

home on any number of days after an earthquake tsunami disaster. We obtained 

high accuracy with the sparse logit model in this study. The model can be applied 

in estimating a disaster only by using grid-based city variables of GIS data and 

existing damage estimation models. In addition, we used the model in the case of 

the Nankai Trough megathrust earthquake and simulated the transition of post-

disaster home-return ratio. The estimation result can help local governments plan 

the management of evacuation centers in terms of the management of supplies 

and goods for disasters. The study could help a new understanding of the quanti-

tative relationship between people returning home after evacuation and city var-

iables with regard to earthquake and tsunami hazards based on spatial infor-

mation science. 

Keywords: Mobile Phone Location Data, Evacuation Prediction, Home-Return, 

Damage Estimation Model, Building Collapse, Disaster Recovery Phase 

1 Introduction 

Various major earthquakes, including the Niigataken Chuetsu-oki Earthquake in 2007, 

the 2011 Great East Japan Earthquake caused damage to building structures and urban 

infrastructures, forcing a large number of people to evacuate [11, 36]. Poor hygienic 

environments and stress from living in a shelter for a long period of time posed a health 

risk to the evacuees, making the secondary damage immense. Proactive measures for 

evacuees against great earthquakes are not sufficient. Therefore, in future large-scale 

earthquakes, it will be significant to take measures for evacuees from immediately after 

the disaster strikes until the time of reconstruction. In particular, the prediction of how 

people move for evacuation during a disaster scenario is important in reconstruction 

plans such as in calculating the amount of relief goods that need to be delivered to 
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shelters and the scales of shelters or in considering what kind of remedies are necessary 

for long-term evacuees. 

In many of the methods traditionally used, the number of evacuees in a future disas-

ter is predicted using questionnaire surveys carried out after past disasters. Japanese 

government uses variables such as the rate of building collapses and of lifeline dam-

ages, to estimate the number of evacuees with a model used for projecting the number 

of evacuees [32]. However, this type of model cannot be used for understanding how 

the number of evacuees will change over time. It is difficult to use this model in a 

reconstruction plan that involves a time axis. Indeed, following the Tohoku Earthquake 

(2011), an accurate number of evacuees could not be estimated. This induced delay in 

inefficient distribution of emergency goods [11]. 

On the other hand, large-scale GPS trajectories collected from mobile phones and 

smart phones are now gradually being used for understanding how individuals move 

[3, 4, 6, 8, 9, 31]. These types of data are used in various areas in spatial information 

science such as traffic management [7, 10, 12, 13], analysis of tourist mobility [19], 

and prediction of population distribution and dynamics [14, 21, 24]. From the perspec-

tive of understanding how people plan to evacuate in times of a large-scale disaster, a 

recent study analyzed the details of the phone calls to investigate the predictability of 

the movement of people who were recently evacuated following the earthquake in 

Haiti, and indicated that most of the places people evacuated to were the places people 

had previously visited [16, 30, 36]. Furthermore, through the use of mobile phone data, 

a decrease in population was observed in various areas affected by the Great East Japan 

Earthquake in 2011 [1, 27, 28, 29, 30]. There are other studies that used Twitter data 

collected following both the Nepal Earthquake and the Kumamoto Earthquake to un-

derstand the tweeting activities of the disaster victims and the changes in their emotions 

after a large-scale disaster struck [17, 33, 34]. It has thus been demonstrated that evac-

uation activities following an earthquake can be monitored using mobile phone GPS 

data. These studies examine the movement patterns of people (places they evacuate to 

and distances they move for evacuation), but there have been no studies that have built 

a model that covers until the time the evacuees return home by combining their indi-

vidual actions and the extent of damage in a chronological order. The reason is that the 

home return of evacuees can involve multiple factors such as damage to building struc-

tures caused by earthquakes, damage caused by tsunami, damage to lifelines, and the 

attributes of the evacuees. 

There have likewise been studies that simulate how people begin to evacuate after a 

disaster strikes, but many of these focused on the estimation for the period right after 

the disaster struck. A chronological estimation that likewise covers the recovery period 

is limited to a simple estimation method at this point [1, 20, 25]. It is, therefore, neces-

sary to build an estimation model for revealing what factors influence the recovery pe-

riod of evacuees and for determining how long it takes for an evacuee to be liberated 

from post-disaster life as such. 

Against this backdrop, this study aims to build a model for estimating when evacuees 

return home by considering multiple factors that emerge right after a disaster strikes 

until they return home, using macro data focused on individual building structures and 

persons collected during the aftermath of the 2011 Great East Japan Earthquake. 
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Therefore, in order to build a model, we first carried out a long-term analysis using 

people flow data collected from mobile phone GPS data continually monitored before 

and after the Great East Japan Earthquake and data on the extent of damage to each 

building in disaster-affected areas. We thereafter revealed what factors influenced peo-

ple when they return home. Then, the model built shall be applied to an earthquake in 

the Nankai Trough, predicted to occur in the future, to estimate the home-return rate of 

each day after the disaster in the Kochi and Tosa Cities in Kochi Prefecture, in order to 

reveal the regional characteristics as to when people return home per area. In this study, 

if critical variables are selectable after identifying potential structures in the estimation 

of home return after a disaster, then resilience evaluation based upon urban vulnerabil-

ities is possible. 

In this paper, we use a sparse modeling (SpM) to estimate home return from precise 

data on urban environment and present the results to understand the potential structure 

of home return and urban system variables. 

2 Data analysis 

In this study, we used the case of the Great East Japan Earthquake in 2011 and built a 

model for estimating the home-return rate each day following the tsunami disaster, us-

ing SpM logit model with high spatial GIS data. The areas covered were six prefectures 

in the Tohoku area, namely the following: Aomori Prefecture, Iwate Prefecture, Miyagi 

Prefecture, Akita Prefecture, Yamagata Prefecture, and Fukushima Prefecture. In the 

creation of the model, we considered both property damage, including damage to build-

ings and lifelines caused by tsunami, and qualitative attributes, such as the attributes of 

people.  

Table 1 shows the list of variables used to create the model and the data sources used. 

Also, because of the variety in data types, such as disaggregated data and mesh-unit 

data, we processed the data by using a 1 km grid as the unit for aggregate calculation 

in the creation of the model. Because the data on the extent of water supply damage is 

limited to those from the second day after the disaster onward, only such data was used 

in this study.  

2.1 Mobile phone location data 

For the estimation of the home-return rate of people following the Tohoku Earthquake, 

we used data from 2011 mobile phone GPS logs called “Konzatsu-Tokei (R)” provided 

by ZENRIN DataCom Co., LTD. “Konzatsu-Tokei (R)" Data refers to people flows 

data collected by individual location data sent from mobile phone under users' consent, 

through Applications provided by NTT DOCOMO, INC. Those data are processed col-

lectively and statistically in order to conceal the private information. Original location 

data is GPS data (latitude, longitude) sent in about every minimum period of 5 minutes 

and does not include the information to specify individual. This is a large database con-

structed of text data from approximately nine billion records belonging to about 1.5 

million users throughout Japan. In this research, we used data covering a one-month 
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period from March 11 to April 7, 2011. The target sample included data from approxi-

mately 30,000 people. The data processing method devised in this research was applied 

and carried out to GPS data by NTT DOCOMO, INC. 

2.2 Estimation of home return rate 

Next, we described the procedure for estimating the home-return rate from GPS data 

by using past study method [22]. From the GPS data, we extracted the staying points 

from 0 to 4 o’clock. The position coordinates of the homes of evacuees for each date 

were the centers of gravity at 0 to 4 o’clock taken as nighttime representative points. 

Then, the coordinates of the estimated residential area for each individual ID and the 

coordinates of the nighttime representative point of each date were compared with each 

other. When the coordinates were within 100 m of the estimated residential coordinates, 

this was regarded as returning home, and the first date this occurred was taken as the 

home-return date. Finally, the home-return rates of the evacuees for each date were 

aggregated into 1 km grid units. 

Figure 1 shows the results of the estimation of the home-return rate at the Great East 

Japan Earthquake in 2011. On March 13, the home-return rate was low in many grids 

on the Pacific side. On March 14, the third day after the disaster, there was a great 

increase in home-return rate between the areas on the Pacific side and the inland areas, 

suggesting a strong effect whether people were affected by tsunami. As the days went 

by, on March 20, the ninth day after the disaster, and March 30, nineteenth day after 

the disaster, we can see that 60 to 80% of the people returned home in the coastal areas 

struck by the tsunami. On the other hand, areas surrounding the nuclear power plants 

were still no-entry areas on March 30. Therefore, the home-return rate remained low at 

80%+. 

2.3 Damage data 

We acquired post-tsunami survey data from the Ministry of Land, Infrastructure, and 

Transport, based on land surveys, including all buildings (approximately 220,000) in 

the inundation area [2]. The data cover the damage situation and flood depth for each 

building in the affected area. For the inundation-tsunami depth in areas, we used mean 

and maximum inundation depth per grid. Data of population of the tsunami inundation 

area, the 2010 population census data (1 km grid) was used therewith.  

The rate of residents living in a tsunami-affected area was calculated by dividing the 

population within the flood grid by the total population of each 1 km grid. To measure 

the estimated home-return rate for each damage category, we assigned the damage sit-

uation of the building in the estimated home for each individual ID of the GPS data and 

calculated the population rate in partially destroyed and collapsed buildings.  
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Table 1. Variables in our estimation model 

Variable Data source Data units 

Number of the days after disaster - Day 

Peak Ground motion Velocity (PGV) Meteorological Agency on Ja-

pan 

1km grid 

Rate of residents living in collapse building Reconstruction support survey Building 

Rate of residents living in partially destroyed 

building 

Mobile phone GPS data and Re-

construction support survey 

People 

Rate of collapse building Reconstruction support survey Building 

Rate of partially destroyed building Reconstruction support survey Building 

Mean of inundation depth by tsunami Reconstruction support survey 100m grid 

Maximum inundation depth by tsunami Reconstruction support survey 100m grid 

Rate of resident living in tsunami  

inundation area 

Mobile phone GPS data and Re-

construction support survey 

100m grid 

Water supply damage Each local government Municipalities 

Water supply recovery rate in each building Each local government Municipalities 

Rate of population with under 6 years old National census 250m grid 

Rate of population with 7 to 64 years old National census 250m grid 

Rate of population with over 65 years old National census 250m grid 
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Fig. 1. Home return rate observed by mobile phone GPS data. Home return rate observed in 

each 1 km grids is shown by the darkness of the shade of purple.  

2.4 Infrastructure data 

We used data on water supply cutoff conditions in each municipality released by the 

Ministry of Health, Labour, and Welfare [15]. Since data on March 11 and 12 did not 

exist among published data, the data after March 13, the second day after the disaster, 

was used.  
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2.5 Attribute of population 

Assuming that a difference exists in the status of home return according to attributes 

(e.g. age and household composition) of evacuees, the data regarding the number of 

households, households by age, and population in 2010 were used for this study. The 

proportion of private households with a member aged 0-5, the proportion of private 

households with a member aged 65 and over, the proportion of the population aged 0-

5, and the proportion of the population aged 65 and over were calculated. 

3 Development of home return model by SpM logit model 

3.1 Target area 

Twelve municipalities were the evacuation areas near the Fukushima No. 1 Nuclear 

Plant and, therefore, were excluded since the evacuation orders by the municipalities 

tended to affect when people were allowed to return home to those 12 municipalities 

after the disaster. In areas with an extremely low number of GPS sample users by 1 km 

grid, we found that the data of certain sample users may have a strong impact on the 

estimation results, thereby affecting the entire estimation. Thus, the areas where the 

number of sample users was four or less were excluded from this study. 

3.2 SpM logit model 

In this study, we created a model via SpM, using the logistic curve as the link function 

for the explanatory variable x, to describe the home-return rate Pi in girds i of each day 

after the disaster in probability according to 0 ≤ 𝑃𝑖 ≤ 1 (Equation 1):

𝑃𝑖 =
1

1+𝑒𝒂𝒙 (1) 

In terms of data compiled in Section 2, it is necessary to conduct modeling (compressed 

sensing) by compressing the data dimensions (selecting the feature amounts), in order 

to maintain the prediction accuracy of the unknown data and to avoid multicollinearity 

and overfeeding. In this study, SpM, which is applied to extract the feature amounts in 

deep learning, is used for compressed sensing. In using SpM, the least absolute shrink-

age and the selection operator (LASSO) were used. In LASSO, ax represents the pa-

rameter that is to be estimated and 𝑃𝑖  represents the probability of the data analyzed.

Just like in equation (2), in the parameter estimation problem of the linear regression 

equation where the logistic curve of log
𝑃𝑖

1−𝑃𝑖
= 𝒂𝒙 is used as the link function, a sparse 

solution ax is obtained by adding ‖𝑥‖1, the primary norm of x, to the log likelihood

(see equation 3) as an anti-sparse penalty term and maximizing it (L1 regularization), 

hence the following equation: 

∑ 𝑙𝑜𝑔(𝑃𝑖) + (1 − 𝛿𝑖)𝑙𝑜𝑔(1 − 𝑃𝑖)
2𝑛

𝑖=0 (2) 

𝑎𝑟𝑔 max(∑ (𝑙𝑜𝑔(𝑃𝑖) + (1 − 𝛿𝑖)log (1 − 𝑃𝑖)2𝑛
𝑖=0 ) − λ‖𝑥‖1) (3) 
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Here, λ is a sparse controlled parameter and λ = 0. Equation (2) corresponds to the 

normal log likelihood. In L1 regularization of LASSO, we can obtain a sparse solution 

where feature structures of the data are appropriately extracted, by selecting λ according 

to the appropriate norm and pruning variables. In other words, selection of variables 

takes place together with modeling, and the number of variables decreases by making 

the penalty parameter λ large. The variable pattern with the least margin of error in this 

process will be used. 

3.3 Model result 

Figurer 2 shows the results of the modeling via SpM. Figure 2 (a), the parameter λ for 

controlling the sparsity is plotted on the horizontal axis, and the number of non-zero 

features and the change in RMSE of the cross variation based on the obtained SpM are 

shown. As λ decreases, the number of nonzero features increases and RMSE decreases 

in inverse proportion to it. We chose the model of λ with minimum RMSE. 

Figure 2 (c) shows the parameters of the intercept α and the explanatory variable x 

of the model developed. We can estimate the home-return rate of each day after the 

disaster by applying these parameters to equation (2). Based on the SpM parameters, 

we can see that the variables selected only 9 variables and related to damage, such as 

home damage (half destroyed and fully destroyed) and inundation depth by tsunami, 

have negative effects on home return. In terms of infrastructures, it was discovered that 

water supply restoration has a positive impact on home return. On the other hand, we 

can see, in terms of the attributes of the residents, that the proportion of children aged 

14 and under had a positive impact on the home return rate. This suggests that privacy 

conditions or the environment at the shelters were fairly poor. 

Figure 2 (b) shows the comparison between the estimated values obtained from the 

developed model vis-à-vis the true values based on deviation rate. As a result of vali-

dation, a strong correlation was obtained with a correlation coefficient at 0.81. Root-

mean-square-error (RMSE) by cross-validation was 0.037, indicating the accuracy with 

a margin of error of 5% or lower. Also, deviation rate of 80 % confidence interval in 

each day are checked without day 2. The 95% confidence interval is 0.59<x<0.83, sug-

gesting that a lower estimated home-return rate means a lower accuracy. These results 

indicate that there is a variability in estimation right after the disaster when the home-

return rate was low, whereas the estimation is highly accurate when the home return 

rate is relatively high (when the extent of damage is small or when many days have 

passed since the disaster). 
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Fig. 2.  Results of the modeling via SpM (a): Relationship between the non-zero feature 

amounts and RMSE for sparse parameter λ. The orange line indicates λ when RMSE is the low-

est. (b): Comparison between the true values and the results of estimation via SpM, (c) Parame-

ters of SpM coefficients for λ when RMSE is the lowest. 

4 Application to the Nankai Trough Earthquake 

4.1 Target area 

In this study, a home return model was constructed and applied to the Nankai Trough 

earthquake that is expected to occur. The home return rate was estimated for each day 

after the disaster. The target area is the Kochi prefecture in the Shikoku region, Japan 

where considerable effects of the Nankai Trough earthquake have been predicted. 

 “Konzatsu-Tokei (r)” (c) ZENRIN DataCom CO., LTD. 
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4.2 Data for damage estimation 

4.2.1 Seismic intensity and tsunami inundation data. 

In this study, we have assumed that seismic intensity data uses “the probabilistic seis-

mic intensity prediction map.” “The probabilistic seismic intensity prediction map” 

manages the relation information of “strength,” “period,” and “probability” of seismic 

intensity based on the location, scale, and probability of all earthquakes that occur in 

and around Japan. The calculation is based on the degree of probability and the extent 

to which the applicable area shakes, and the distribution is shown on the map. This data 

is provided by National Research Institute for Earth Science and Disaster Resilience 

(NIED) and can be downloaded from the Internet [18]. The maximum seismic intensity 

was calculated for each 1-km mesh, so that the data could be unified with other usage 

data. In this study, we assumed the occurrence of the Nankai Trough earthquake and 

used data with an excess probability of 2% for 50 years in “the probabilistic seismic 

intensity prediction map” (Fig.3 (a)). 

The tsunami run-up data used to achieve the simulation results were considered as-

suming the occurrence of the Nankai Trough earthquake and were provided by Tohoku 

University (Fig. 3 (b)). Table 2 summarizes the data. This data was in a 10-m grid unit 

for 180 min (30 s interval over 360 scenes) after the disaster. Additionally, we calcu-

lated the ratio of the estimated tsunami inundation depth at each stage for a 1-km grid 

using the maximum inundation depth data. Furthermore, the ratio of the population in 

the tsunami-inundated area to the resident data of the building micro-geo data was cal-

culated. 

4.2.2 Population distribution data. 

The data of a 1-km grid unit from the National census data (2015) were used for popu-

lation distribution in this study. In addition, an area, where the data was aggregated for 

each grid, was considered, because of the confidential processing, and these meshes 

were processed by applying the same numerical value as the aggregated grid. 

Fig. 3. Spatial distribution of the estimated seismic intensity and tsunami inundation depth at 

the Nankai trough earthquake. a Seismic intensity data for each 1-km grid unit Estimated tsu-

nami inundation depth for each 1-km grid unit.  
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Table 2. Overview of the tsunami inundation simulation 

Item Content 

Earthquake name The Nankai Trough earthquake 

Calculation resolution 10-m grid unit

Area Area surrounded by (x, y) = (16210, 42650), (18830, 66290) 

The number of grids 8,283,456 

Basic equations and solutions Nonlinear long wave equations and the Leap-Frog model 

Time slice 30 s for 180min 

Fault model The Tokai-Nankai earthquake (Aida 2 model)  

Frictional resistance Manning roughness coefficient 

Positioning Considering high tide 

4.3 Damage estimation 

4.3.1 Estimation of building damage. 

The damage estimation for each building as a result of the assumed Nankai Trough 

earthquake was based on the estimation method used by many local governments and 

was aggregated to the 1-km grid unit. Additionally, the damage to each building was 

stochastically calculated, including tsunami, fire, and earthquake collapse [22]. The 

damage estimation model uses the damage fragility curve model of Yamaguchi and 

Yamazaki [35] for calculating building damage due to seismic intensity and the fragility 

curve model of Suppasri et al. [26] for calculating building damage of the tsunami 

model. Moreover, in this study, probabilistic calculations were made in a worst-case 

scenario, i.e., the assumed occurrence of the earthquake at night, when home residents 

would be considerably affected by building damage. 

4.3.2 Estimating water supply recovery rate.  

The water supply restoration rate was estimated based on the model proposed by 

Nojima and Kato [20]. The model can estimate the restoration rate of the water supply 

on each day after a disaster by inputting the measured seismic intensity.  

We estimated the restoration rate of the water supply after the Nankai Trough earth-

quake hits by inputting the seismic intensity in the model described above.  

4.4 Result 

Figure 4 shows the estimated home return rate for each 1-km grid. The general tendency 

observed was that the home return time was late in the tsunami-flooded area and the 

area affected by the earthquake seismic intensity. Figure 5 shows the average estimated 

home return rate for each municipality. The home return rate was particularly slow in 

the five areas comprising Kochi City, Nankoku City, Tosa City, Susaki City, and Konan 

City that were affected by the tsunami. 
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Fig. 4.  Time series change of the estimated home return rate in the event of the Nankai Trough 

earthquake (1-km grid unit) 

Fig. 5. Time series change of the estimated home return rate for each municipality in the event 

of the Nankai Trough offshore earthquake. “---" showing the municipality which damaged by 

tsunami and seismic intensity, “―” showing the municipality which damaged by only seismic 

intensity. 

 “Konzatsu-Tokei (r)”(c) ZENRIN DataCom CO., LTD. 

 “Konzatsu-Tokei (r)” (c) ZENRIN DataCom CO., LTD. 
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4.5 Discussion 

4.5.1 Non-tsunami area. 

When we investigated the reasons for the slow return to home areas scattered in inland 

areas such as Ino and Niyodogawa, we identified that the percentage of residents living 

in partially destroyed buildings and the percentage of residents living in completely 

destroyed buildings were large.  

In addition, the areas where the home return rate was slow, especially Kochi City, 

comprised regions where a large proportion of residents used to live in building that 

were completely destroyed. In other words, in areas that were not affected by the tsu-

nami, the impact of half-destroyed buildings and completely destroyed building con-

siderably influenced the home return rate of the residents in those areas. 

4.5.2 Tsunami area. 

Among the areas affected by the tsunami, Konan City recovered faster than Kochi City 

and Tosa City. This attributed to the shallow inundation depth of the tsunami in Konan 

City; however, it is less than those of the tsunamis in Kochi City and Tosa City (Figure 

6). In other words, in areas affected by the tsunami, the effect of the tsunami on the 

home return rate is considerable and the home return rate immediately after the disaster 

is low. However, recovery was observed to be fast. 

By using this result, we could support decision making of local governments by 

providing predictions of how many people will evacuate and how many people retune 

to home in each day prior to the disaster.  

Fig. 6. Comparison of average values of each variable in three cities (Konan City, Tosa City and 

Kochi City) in the tsunami inundation area. 

 “Konzatsu-Tokei (r)” (c) ZENRIN DataCom CO., LTD. 
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5 Conclusion 

In this study, using the damage situation of the Great East Japan Earthquake, we con-

structed a model to identify the home return rate for each day after the disaster and 

estimate the time taken to return home. The proposed model shows an accuracy error 

of approximately 10%. In addition, we linked the situation of individual home damage 

using large-scale human flow data and examined the difference between home return 

status and home damage status. 

Moreover, we applied the model that estimates the home return rate to the damage 

estimation results, assuming the occurrence of the Nankai Trough earthquake, and pre-

dicted the home return status in each region in a time series. By using this result to 

understand the evacuation status of evacuees in a time series, taking measures such as 

estimating the amount of material needed for evacuation shelters, examining the size of 

evacuation shelters, and arranging human assistance was possible. By using this model, 

long-term home homes can be expected to be developed by applying real-time actual 

damage observation data immediately after an actual disaster and not just on the basis 

of advance estimation. Additionally, it can also be used to predict the home return sta-

tus. 

This study has some limitations and we need to work toward certain goals in the 

future. First, in this study, some important parameters were assumed. This issue can be 

solved be considering extra data. Some examples of the assumptions are as follows. In 

this study, lifeline damage considered only water and sewage systems; however, it de-

pends on various factors such as electricity, gas destroyed road infrastructure. For this 

reason, considering the damage caused by power outage is necessary, so that the return 

of evacuees can be estimated more accurately. Second, the reconstruction policies and 

disaster prevention measures differed depending on the region; therefore, developing a 

method to incorporate these effects into the model is necessary. Third, must evaluate 

the reliability of the model by applying it to the Kumamoto earthquake, which occurred 

in 2017, and other earthquakes that occurred in the past. 
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