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Abstract. Discourse may contain both named and nominal entities. Most com-

mon nouns or nominal mentions in natural language do not have a single, simple

meaning but rather a number of related meanings. This form of ambiguity led to

the development of a task in natural language processing known as Word Sense

Disambiguation. Recognition and categorisation of named and nominal entities

is an essential step for Word Sense Disambiguation methods. Up to now, named

entity recognition and categorisation systems mainly focused on the annotation,

categorisation and identification of named entities. This paper focuses on the an-

notation and the identification of spatial nominal entities. We explore the com-

bination of Transfer Learning principle and supervised learning algorithms, in

order to build a system to detect spatial nominal entities. For this purpose, dif-

ferent supervised learning algorithms are evaluated with three different context

sizes on two manually annotated datasets built from Wikipedia articles and hik-

ing description texts. The studied algorithms have been selected for one or more

of their specific properties potentially useful in solving our problem. The results

of the first phase of experiments reveal that the selected algorithms have similar

performances in terms of ability to detect spatial nominal entities. The study also

confirms the importance of the size of the window to describe the context, when

word-embedding principle is used to represent the semantics of each word.

Keywords: Geographic Information Retrieval, Natural Language Processing, Nom-

inal Entity Recognition

1 Introduction

A critical aspect of polysemy (i.e., the ability to have multiple meanings) is that the

different meanings of a word can be conceptually closely related but in very distant

semantic categories. In most cases, the contextual support of evocation makes it possible

to retain the appropriate meaning. For example, consider the word ’church’ used to refer

an organisation sense as in sentence (1). In this sentence (1), it allows to personify an

affirmation, versus a building sense, as in sentence (2) here used as a spatial reference

point.
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(1) ’Depending on the tradition, these organisations may connect local churches to

larger church traditions.’5

(2) ’Continue straight on towards the church then turn right to reach the park.’6

In geographic information retrieval approaches involving Natural Language Pro-

cessing (NLP) methods, the task of Word Sense Disambiguation (WSD) is defined by

Vanetik and Litvak [1] as a set of methods that automatically assign the appropriate

meaning to a polysemous word. Lesk [2] used the context (short phrase containing the

ambiguous word) to look for partial matching with the definitions in dictionaries (glos-

saries) of the ambiguous word and its context words in order to disambiguate the word

sense. Lesk’s method aims to disambiguate the sense of any word of the vocabulary,

which depends on words’ definitions in dictionaries that are often short and do not

provide enough context. In this paper, we also consider the local context of words to

disambiguate them, with a focus on a more specific case of spatial entities.

The recognition of entities is an important task in NLP and according to Vicente

[3], named entity is defined as a concept used to designate a mono-referential discursive

element, which coincides with a proper name definition and follows specific syntactic

patterns. The ’reference’ refers to the link between the linguistic expression and a single

element of the world (i.e., the referent). There may also be situations where, due to a

specific context, a common noun or a nominal mention could be used as a co-reference

to a named entity or may have the ability to refer to a unique object as presented in the

example (2).This will be referred to as a nominal entity.

As part of the Choucas project 7, we are interested in the identification of the two

types of entities referring to places (i.e., named and nominal). This identification must

be carried out on the basis of hikes descriptions in the form of unstructured text [4].

With regards to named entities, Gaio and Moncla [5] have proposed the concept of

Extended Named Entity (ENE). They argue that a named entity can be composed of a

proper name and a descriptive expansion. The descriptive expansion is made of common

nouns that can change the default type of the object referenced by the proper name on its

own, (e.g: ’maire de Gavarnie’: Gavarnie (populate place), mayor of Gavarnie (social

function)). They also define the concept of Extended Spatial Named Entity (ESNE) as

an ENE that designates a specific spatial object (e.g: ’Boulevard du Général Charles

de Gaulle’: Charles de Gaulle (person), Général Charles de Gaulle (social function),

Général Charles de Gaulle Boulevard (location)).

Nominal entity detection can be viewed as an extension of the Named Entity

Recognition (NER) task. Therefore, the problems described for named entities must

also be considered for nominal entities. As shown in examples (1 and 2) the same noun

can be used to refer to a spatial object or else, which leads to ambiguities. Therefore,

the recognition and disambiguation of spatial nominal entities in a corpus of an un-

structured text compose a challenging problem to which we propose a solution. In this

5Source: Wikipedia
6Source: hiking description (https://www.visorando.com)
7The CHOUCAS project (http://choucas.ign.fr) is a French interdisciplinary research project

aiming to respond to a need expressed by the high mountain gendarmerie platoon to help local-

ising victims in mountain area. When they describe their position by referring to surrounding

elements like in ”I can see Mont Blanc and I am close to a lake”
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paper, we first introduce the concept of spatial nominal entity (SNoE) and we propose

an approach for their recognition from unstructured texts. For this purpose, we trained

several supervised learning algorithms to study their ability to detect whether a nominal

entity identified in the sentence is used as a reference to a spatial object or not.

The remainder of this paper is structured as follows. In section 2 we present an

overview of tasks and methods from NLP domain related to our work such as: named

and nominal entity recognition and categorisation, word-embedding and transfert learn-

ing. Section 3 is dedicated to the definition of the concept of SNoE and provides

methodological details of our approach for SNoE recognition. In section 4 we describe

the dataset we have generated and manually tagged. This dataset is used to train and

evaluate the studied algorithms mainly to demonstrate the feasibility of our approach;

we also expose and discuss the experimental results of these algorithms. Finally, section

5 concludes this paper.

2 Related work

NER is considered as the key task in the field of WSD. NER implementations are based

on a wide variety of methods and their role is to recognise named entities in a sen-

tence and classify them in various classes (e.g. Name of Location, Person, Organisation,

Quantity, Time, Percentage etc.). Despite the many implementations available, there is

a great need to develop methods to refine the capabilities of NER, since existing tools

have a limited scope. In particular, the vast majority, if not all of these tools are not

able to recognise nominal entities (without proper nouns). Whatever these limitations,

it appears in the literature that NER has been addressed by both machine learning and

knowledge-based approaches.

Learning methods are based on labelled learning data sets, usually by a human

who does not need to be an expert in linguistics such as in [6,7,8,9,10]. Knowledge-

based approaches use hand crafted syntactic and semantic rules developed by linguistic

experts. They involve morpho-syntactic structures and specific resources (e.g., lexicons,

gazetteers) [11,12,13,14]. In [15,16,17] both type of approaches have been combined

to build hybrid methods where the input features of the machine learning algorithms

are provided by knowledge-based systems. Once entities are recognised, the consid-

ered categories may vary. For example, some NERs have the ’acronym’ category while

others do not but can categorise dates, etc. However, the ’location’ category is always

present.

For instance, the well-known Stanford NER [18] is based on a features extraction

and Conditional Random Fields (CRF), the system categorises named entities in three

classes (’person’, ’organisation’ and ’location’).

NER systems dedicated to location are known as: ’geoparsers’. In general, geop-

arsers proceed two sub process: geotagging and geocoding. The geotagging (i.e. recog-

nition) consists in marking in texts all segments containing a named entity referring

to a place (i.e. place name. The geocoding (i.e. resolution) assigns a single couple of

geographical coordinates to the previously identified (in geotagging step) named en-

tity. Karimzadeh and al. [19] have proposed a geoparser called Geotex. This geotagging

system is a web-based geotagger where; users have a choice within a list of 6 publicly
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available NER systems (Standford NER 8, ANNIE 9, Illinois NER 10, MITIE 11, Apache

OpenNLP 12, LingPipe 13). The Edinburgh Parser [20] is a major geoparser whose; the

geotagging task is performed by a multi-rule based geotagger. Moncla et al. [21] have

proposed a system called Perdido14, consisting in a rule-based method implemented

with a cascade of transducers for the generic recognition of ESNE structures. The res-

olution is done within specific corpora composed exclusively of textual descriptions of

pedestrian movements.

As stated in the introduction, words used to construct nominal entities are polyse-

mous and the context is the main available information for identifying the used meaning.

A solution that currently seems to be very promising is the Word-Embeddings (WEs).

WEs are continuous space language models built using Neural Networks (NN). The

main idea behind WEs is to project a set of words of a vocabulary of size Nv into a con-

tinuous vector space of a lower dimension Nd (knowing that Nd << Nv). As a result,

each word of the vocabulary is represented as a real-valued vector in a low-dimensional

space and words with similar representations appear in similar contexts. WEs can be

learned in an unsupervised way to capture distributional similarities between words

of the vocabulary, and be fine-tuned in a supervised context. Several works such as

[22,23,24,25,26,27] have used NN to learn distributed representations for words. These

approaches differ in the type of the model and the data used to train the model.

The principle of producing WEs through neural networks was first introduced by

Bengio [28]. Recently, Bojanowski et al. [29] have proposed FastText, a WE method

that takes into consideration the internal structure of words by including character se-

quences in the learning process of word representation, which has proved to be of a great

impact when working with morphological rich languages such as French or Finnish.

WEs has opened a new direction for many NLP tasks based on NN such as question

answering [30,31], sentiment analysis [32,33,34], relation extraction and classification

[35,36], NER [8] and mention detection [37].

In our context of implementing a WSD process, geoparsing and geotagging named

entities and their spatial-based context is fundamental but not sufficient. Therefore, it

is essential to apply the same kind of processing to nominal entities. To the best of our

knowledge, none of the actual state-of-the-art works attempt to identify SNoE, at least

for French language.

In the absence of a French annotated corpus of nominal entities, our methodol-

ogy is based on the principle of transfer learning (TL). According to the proceed-

ings of the NIPS-95 workshop entitled ’Learning to Learn’ [38], TL was primarily

motivated by: ”the need for lifelong machine-learning methods that retain and reuse

previously learned knowledge”. Moreover, the information Processing Technology Of-

fice (IPTO) of the Defense Advanced Research Projects Agency (DARPA) published

8http://nlp.stanford.edu/software/CRF-NER.shtml
9https://gate.ac.uk/sale/tao/splitch6.html#chap:annie.

10http://cogcomp.cs.illinois.edu/page/demo view/ner
11https://github.com/mit-nip/MITIE
12https://opennlp.apache.org
13http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html
14http://erig.univ-pau.fr/PERDIDO/demonstration/
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a Broad Agency Announcement No 05-29 in 2005 15 where they define TL as ”the

ability of a system to recognise and apply knowledge and skills learned in previous

tasks to novel tasks”. Following the principles of TL, we propose to use the FastText16

pre-trained WE model as input of different supervised learning algorithms. Then, we

compare the obtained results with two manually labelled datasets.

3 Automatic identification of SNoE

3.1 Concept and definition

The SNoE is defined as a nominal phrase that refers to a physical object which is usually

involved in a spatial-based context. SNoE may be a common noun composed of a sin-

gle token (village, hut, church) or composed of several tokens (boundary marker, tourist

office, transformer substation). The concept of SNoE derives from the concept of nom-

inal entity that was defined in the Entity Discovery and Linking task17 as ”A nominal

mention consists of a common noun which refers to an entity in place of a name” and

is classed into 5 different types (’person’, ’location’, ’organisation’, ’facilities’, ’geo-

political entity’). Hence, a SNoE is composed of at least one common noun (i.e. the

pivot) involved in a spatial-based context (e.g. [. . . ] reach the summit.) in which there

is no proper name present, because otherwise the noun ’summit’ is a component of an

ESNE (e.g. [. . . ] climbing to the summit of Mont Blanc).

In our definition, the concept of SNoE covers:

– Physical static entities that have fixed geographical coordinates, such as 3a.

– Spatial objects with the property of being able to be in motion, as shown in example

3b.

– A group of physical objects forming a unique spatial reference point, such as 3c.

Consequently, this concept does not cover:

– Nominal phrase involving a common noun, which may refer to a physical object,

but associated with a proper name, such as 4a.

– Nominal phrase only used for its ability to evoke the object (abstract or physical)

as a concept without a spatial reference, such as 4b.

– A spatial reference to a virtual object without physical existence, such as an ephemeral

entity which exists only in a specific moment of a narrative, as illustrated in exam-

ple 4c

(3) a. Continuer la descente en sous-bois pour rejoindre le lac.

’Continue downhill in the undergrowth to reach the lake.’

b. Prendre le sentier qui passe sous le téléphérique.

’Take the path that goes under the cable car.’

15http://logic.stanford.edu/tl/TransferLearningPIP.pdf
16https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
17https://tac.nist.gov/2016/KBP/guidelines/TAC KBP 2016 EDL Guidelines V1.1.pdf
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c. Le sentier grimpe au-dessus du hameau avec un passage dans les rochers.

’The path climbs through rocks, above the hamlet .’

(4) a. À partir des chalets de l’Échet, faire demi-tour et rejoindre le carrefour

précédent.

’From the chalets de l’Échet, make a U-turn and walk back to the previous

crossroads.’

b. Le chalet est un bâtiment rural des régions de montagne, dont le bois est le

constituant essentiel.

’The chalet is a rural building of mountain regions, essentially built of

wood’

c. Pour la descente, revenir sur ses pas pour une bonne centaine de mètres de

dénivelé pour rejoindre le carrefour de montée.

’For the descent, retrace your steps for a good hundred meters of drop to

reach the crossroads of the ascent.’

Furthermore, as mentioned previously, words may be polysemic, they may have a dif-

ferent meaning depending on different syntactic or semantic contexts. In the scope of

our problem, we distinguish two main categories covering three different senses for a

specified word:

1. The word is used to identify a physical object used as a landmark, such as example

2.

2. The word is used to identify a non physical object, an abstract entity with no phys-

ical borders, it could be a reference to an organisation such as 1 or the word is used

to identify a physical object which is not used as a landmark, as in the following

example 5a.

(5) a. [. . . ] les églises à l’époque gothique sont parfois revêtues d’une épaisse

couche d’enduit ou de mortier [. . . ]

’[. . . ] churches in the Gothic period are sometimes covered with a thick

layer of plaster or mortar [. . . ]’

3.2 Methodology

In order to detect SNoE, we are considering the development of a system based on

a supervised machine learning approach. As shown on figure 1 the process-chain is

divided in two main phases: the pre-processing phase and the learning phase.

Pre-processing The pre-processing phase is an input preparation step for the learning

phase. Three tasks are performed: 1) establishing a lexicon containing a varied list of

terms that can constitute the pivot 2) context setting and 3) semantic representation of

words.

Although it is recognised that the left context is generally more important in French

than the right context, there are cases where the right-hand context is useful to improve

discrimination. We extract n-grams from sentences because both the right and the left

6 of 18

AGILE: GIScience Series, 1, 2020. 
Full paper Proceedings of the 23rd AGILE Conference on Geographic Information Science, 2020. 
Editors: Panagiotis Partsinevelos, Phaedon Kyriakidis, and Marinos Kavouras 
This contribution underwent peer review based on a full paper submission. 
https://doi.org/10.5194/agile-giss-1-15-2020 | © Authors 2020. CC BY 4.0 License.



Fig. 1. Supervised machine learning approach for spatial nominal entity recognition

context are useful and important to determine whether or not the pivot in the sequence

of n-grams considered is used as a spatial entity. In order to obtain the n-grams from a

given corpus we have constructed a lexicon of terms that can refer to spatial entities. For

building this lexicon, we propose to manually extract a set of words used as SNoE from

a set of French hiking description texts, such as lac, pont, église, avenue, and office du

toursime (respectively lake, bridge, church, avenue, tourist office). This lexicon is then

used to extract n-grams from a sentence (see example 6) while the n-grams represents

the context of the pivot. The extracted sentences are then manually annotated in order

to build the different datasets used for training, testing and validation. Our hypothesis

is that the principle of the n-grams (with the size of n yet to be defined) associated with

the principle of TL are sufficient for the different algorithms under study to achieve a

reasonably good rate of expected decision.

(6) The sentence: [. . . ] ’the path climbs through rocks, above the lake to reach the

country road’ [. . . ]

The pivot word: ’lake’

The 7-grams context: ’ , above the lake to reach the’

Once the n-grams extracted, the next step of the prepossessing phase is to vectorize

the inputs. In accordance with the principles of TL, each word xi of the n-grams N is

transformed into a vector ei of dimensionality de by looking it up in the WE table of a

pre-trained FastText. As a result, the original n-grams can be now viewed as a matrix X

of size n∗de :

X = [e1,e2, ...,en] (1)

Notice that sometimes the pivot could be at the beginning or at the end of a sentence

and not enough words can be found before or after the pivot. For these cases the best

alternative is to pad using a White noise. The concept of white noise in WE could

be related to the concept of neutral vector [39,40]. Unfortunately the concept of neutral

vector does not exist in WE. However, we solve this issue by randomly extracting words

from a French corpus.

Supervised Learning algorithms As shown in Figure 1, during the learning phase

the matrix X is fed into the input layer of a supervised machine learning algorithm.
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As the experiments were designed, the algorithm must make a dichotomous choice in

order to decide whether the pivot word of the input matrix represent a spatial phrase

or a non-spatial phrase. We have used two types of machine learning models: classical

machine learning (ML) and deep neural networks (DNN). Five different algorithms

were selected (two ML and three DNN) based on some of their characteristics that we

considered potentially relevant to our problem and described below. Each ML algorithm

is fine tuned on a training dataset, then the best model is chosen following the empirical

results on a testing dataset (see Section 4.1).

For classical ML algorithms we choose to evaluate the performances of Support

Vector Machine (SVM) and Random Forest (RF) algorithms for the task of SNoE recog-

nition. These two algorithms have been commonly used for NLP and information re-

trieval tasks such as text classification [41,42,43].

Support vector machine (SVM), is a vector space based machine learning method

proposed by Cortes and Vapnik [44] where the goal is to find a decision boundary

between two classes that is maximally far from any point in the training data (possibly

discounting some points as outliers or noise). The SVM algorithms have been used in

text classification task [43,42,41].

SVM models are known to scale well with high dimensional data with a good ca-

pacity of generalization and with a limited risk of over-fitting. Additionally, SVM is

efficient when the number of input dimensions is greater than the number of samples.

Thus, SVM appears as a good choice for our study and experiments using WEs. Ran-

dom Forest (RF), is a supervised machine learning algorithm introduced by Breiman et

al. [45] that has been widely used for classification and regression tasks. The principle

behind RF is to create a forest with n number of decision trees. Then by a sampling

process based on the bootstrapping principle [46] the algorithm created n subsets of the

learning dataset and each tree is trained on one of these subsets. In order to classify an

example, a ’tree voting’ operation is conducted (i.e., where a tree predicts a class). Each

vote is recorded and the forest chooses the class with the highest number of votes. In

general, the greater the number of trees in the forest is, the stronger the prediction and

the higher the accuracy are. The purpose of choosing the RF algorithms is motivated by

the fact that the results of a trained RF models could be more interpretable than other

complex models such as neural networks.

Deep learning models have recently led to significant and rapid progress in several

NLP tasks such as: NER, Relationship extraction and question answering. We have ex-

perimented three DNN models: Multilayer Perceptron with Auto-Encoder, a Multilayer

Perceptron with Principal Component Analysis, and a Gated Recurrent Unit.

Multilayer perceptron with an auto-encoder (MLP+AE), is a pipeline composed

of an auto encoder (encoding layer, decoding layer) and a deep multilayer perceptron

(MLP). The main idea behind using autoencoder (AE) is dimensionality reduction. We

have made the hypothesis that as FastText is a model of pretrained vectors (300 dimen-

sions) on Wikipedia and Common Crawl, it provides a generic representation of words.

As a result, similar words (such as the plurals) have independent embeddings. In that

way a vector representation of a word contains a lot of redundant information. What

if we could take out the redundancy and express the same information in a fraction of

the numbers (compression)? An AE can be used for that purpose. The AE receives the
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input matrix X representing a sentence and learns to encode it into a less dimension

representation X ′. The AE starts out by compressing the data into a lower-dimensional

representation z (encoding step), and then converts it back to a reconstruction of the

original input (decoding step). With the convergence of the AE, the representation z is

a compressed version of the data but still encodes the same quantity of the information.

The encoded representation matrix X ′ is fed into the deep MLP which performs the

prediction task.

Multilayer Perceptron with a Principal Component Analysis (MLP+PCA) is a

pipeline with a Principal Component Analysis (PCA) and deep MLP. As AE, the PCA

is a method for data compression. The basic idea of PCA is to reduce the dimensionality

of inputs by transforming elements of the input vector e to a new set of variables known

as the principal components PCs. The PCs are a linear combination of the original vari-

ables, the PCs are orthogonal i.e., the correlation between any pair of variables is 0. The

obtained vector is an eigenvector and represents the feature vector which is fed into the

deep MLP. Both MLP+PCA and MLP+AE models uses a dimensionality reduction of

the inputs, the hypothesis behind dimensionality reduction is to learn on a discriminat-

ing information. Indeed, the vector representation of the inputs using WEs provides a

set of all the possible semantic spectrum for a given word. However, our context could

be seen as a language of specialty with a specific terminology and therefore we assume

that we just need a subset of possible semantics, so a subset of components of the vector

representation.

Gated Recurrent Unit (GRU), was introduced by Cho et al. [47] and is an improve-

ment of the standard recurrent neuron network (RNN) to solve the vanishing gradient

problems that comes with RNN by bringing up the concepts of update gate and reset

gate. As shown in Figure 2 the update gate zt helps the model to determine how much

of the past information (from previous time steps) needs to be passed along the future,

while the reset gate rt is used to decide how much of the past information to forget. In

others terms, zt and rt are two vectors that decide which information should be passed

to the output, therefore the GRU can be trained to keep information for long term and

remove information that is irrelevant to the prediction.

Fig. 2. The gated recurrent unit (source: [47]).
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GRU is design as a solution for short-term memory such as LSTM (Long Short

Term Memory) [48]. While LSTM has three gates (input, output, and forget gates),

GRU uses only two (reset and update gates). The GRU network is less complex than

LSTM and is trained faster. This makes the GRU less complex than LSTM and so

GRU models are trained faster than LSTM. In addition, the GRU unit controls the flow

of information like the LSTM unit, but without having to use a memory unit. It just

exposes the full hidden content without any control. According to Yin et al. [49] GRU

has shown better performance on certain smaller data-sets for text classification tasks

in NLP. For these reasons we have decided to evaluate the performances of the GRU

model in our case study. An advantage of GRU being in the fact that it takes into account

the sequentially of the input, which has a great impact as we work on text classification

where the words order in a sentence is an important information.

4 Experiments and evaluations

This section describes the experimental study to demonstrate the feasibility of our ap-

proach, i.e., examine the ability of each algorithm to detect SNoEs. Thus, we have con-

ducted a series of experiments based on two manually annotated gold standard datasets

(cf. 4.1). The validation dataset is dedicated to evaluate the categorisation performances

of each system on the SNoEs task. Pivots used to compose the samples of the validation

dataset, are the same ones that were used for learning (training dataset) but in different

contexts.

The second dataset (emergence dataset) is used to study the emergence perfor-

mance of the different systems. Emergence assessment allows us to measure the ability

to properly classify samples holding new pivots that do not have a sample in the training

data set. As our study is a classification task we used the evaluation metrics: Precision

(P), Recall (R), Accuracy (ACC) and F1 Score (F1) which is a combination of both

recall and precision.

4.1 Datasets

As previously mentioned, there is no standard French dataset available to train and eval-

uate nominal entities recognition algorithms. Therefore, we have decided to build our

own dataset. This implies two steps: 1) building the lexicon, 2) extracting and annotat-

ing a set of sentences containing at least a word from the lexicon.

As explained in section 3.2, the lexicon is built by manually extracting all the

words used as SNoEs from a set of 14 French hiking description texts. As a result,

141 words have been extracted and constitute the elements of the lexicon called Aléa.

Starting from this lexicon, we have extracted a corpus of sentences containing at least

one lexical entry from two different sources:

1. Wikipedia articles, using the OpeanSearch API 18.

18https://fr.wikipedia.org/wiki/OpenSearch
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2. Textual hiking descriptions from two hiking and outdoor sharing community web-

sites (Visorando19 and Camptocamp20) using a custom web crawler.

A corpus of 78,785 sentences were extracted from different web sources, 25,821

sentences were extracted from both Visorando and Camptocamp, where 52,964 sen-

tences were extracted from Wikipedia. A total of 956 sentences were randomly selected

from the corpus then manually labelled and distributed as shown in Table 1. As il-

lustrated in the introduction and explained in Section 3.1, an example is annotated as

positive only if the pivot designates a SNoE, otherwise it is labelled as negative.

Table 1. Distribution of sentences manually labelled in our dataset

C1 C2

Datasets Train Test Validation Emergence

Positives examples 289 112 112 51

Negatives examples 279 82 82 42

Total 568 194 194 93

We dedicated 568 samples for the training dataset that is used to adjust the model

parameters (weights and biases in the case of Neural Network), 194 samples for the test

dataset to fine-tune the hyper-parameters of the trained models. Finally, 194 samples for

the validation dataset that is used once a model is fully trained (using the train and test

datasets) to evaluate competing models. Each sample is a sentence annotated according

to the pivot meaning, the sample is annotated as SNoE if the pivot is used in its spatial

meaning in the context of the sample, and is classified as non-SNoE otherwise. This

dataset is called ’C1’.

In order to study the ability of different algorithms to detect new SNoE, we have

extracted a set of sentences using a new lexicon of 15 new pivots extracted from the

Geonto ontology [50]. These pivots do not correspond to any lexical entry of Aléa,

therefore, no sentences containing any of these new pivots are present in the training,

testing and validation datasets. A set of 93 sentences containing new pivots was then

manually labelled according SNoE or non-SNoE.

This dataset allows us to evaluate the ability of the systems to detect new pivots that

have not been seen before (during training). We have named this task as the emergence

of new pivots and we identify this dataset as ’C2’.

All datasets (Datasets ’C1’ and ’C2’) supporting this publication are available in a

github repository.21

4.2 Resources

According to the TL principle, all the experiments below use a pre-trained WEs. The

WEs set has a dimension of de = 300 and was produced by a Fastext [51] trained on

19https://www.visorando.com
20https://www.camptocamp.org
21https://github.com/ANRChoucas/Spatial-Nominal-Entity-Recognition/tree/master/data
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Common Crawl and Wikipedia using the CBOW method. This WEs set is publicly

available22. Furthermore, we have used the implementation of the deep learning algo-

rithms (GRU, MLP+AE, MLP+ACP) provided within the python library Keras23. For

the classical machine learning algorithms (SVM, RF) we have used the implementa-

tions provided by the python library Scikit-learn24. All the trained models supporting

this publication are available in a github repository.25

4.3 Evaluation results

We have conducted a series of experiments on two datasets in order to evaluate the ab-

solute categorisation performances of each system (using the dataset ’C1’) and study

the emergence of new pivots (using the dataset ’C2’). We have evaluated the perfor-

mance of each machine learning model (GRU, MLP+ACP, MLP+AE, SVM, RF) with

three different context sizes (1 gram, 5 grams, 7 grams), which results in 15 systems.

Categorisation performances We have conducted an experiment based on the valida-

tion dataset (from ’C1’) in order to compare the performances of each algorithm, table 2

shows the performances of the 15 models. A general observation is that the results of al-

most all the tested models have better results when the value of n increases. This is con-

sistent with the hypothesis that the context holds important information about the spatial

semantics of a SNoE. An exception was found for models based on the MLP+ACP ar-

chitecture (systems: 13, 14, 15) as there was a slight decrease in performance from 1

gram to 7 grams.

More precisely, we notice that both MLP+AE 7 grams and GRU 7 grams slightly

outperforms the other algorithms. The MLP+AE-7grams had obtained an accuracy of

79,38% and a F1-score of 83,19%, while GRU-7grams obtained a closed result of

78,35% and 80,9% for accuracy and F1-score respectively. As the differences are rather

small, this observation requires to be confirmed by a larger scale experiment.

It can already be said that the chosen approach is viable. In particular, this makes

it possible to consider the use of neural network algorithms despite the fact that only a

small corpus is available.

Emergence performance In order to study the emergence performance of the algo-

rithms on the SNoE recognition task, we evaluate them using the ’C2’ dataset. Table 3

shows the evaluation results of the emergence capacity of each system. As a reminder,

the emergence capacity makes it possible to measure the ability of a system to recognise

expressions (ngrams) whose pivot is used with a spatial meaning and is not part of the

Aléa lexicon that helped to build both learning and validation datasets.

The same observation on the validation results can be made on the emergence re-

sults. The increase of the context size improves the global classification performance

22https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
23https://keras.io
24https://scikit-learn.org/stable/
25https://github.com/ANRChoucas/Spatial-Nominal-Entity-Recognition
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Table 2. Evaluation results on the validation dataset

System Algorithm Ngrams T P T N FP FN ACC P R F1

1

SVM

1g 81 56 26 31 70,62% 75,70% 72,32% 73,97%

2 5g 85 63 19 27 76,28% 81,37% 75,80% 78,70%

3 7g 87 63 19 25 77,31% 82,07% 77,67% 79,81%

4

RF

1g 79 56 26 33 69,58% 75,24% 70,53% 72,81%

5 5g 77 65 17 35 73,19% 81,91% 68,75% 74,75%

6 7g 82 64 18 30 75,25% 82,00% 73,21% 77,35%

7

GRU

1g 78 53 29 34 67,52% 72,90% 69,64% 71,23%

8 5g 84 63 19 28 75,77% 81,53% 75,00% 78,13%

9 7g 89 63 19 23 78,35% 82,41% 79,46% 80,90%

10

MLP+AE

1g 83 52 90 29 69,58% 73,45% 74,10% 73,77%

11 5g 84 60 22 28 74,22% 79,24% 75,00% 77,00%

12 7g 99 55 27 13 79,38% 78,57% 88,39% 83,19%

13

MLP+PCA

1g 77 52 30 35 66,49% 71,96% 68,75% 70,31%

14 5g 78 55 27 34 68,56% 74,28% 69,64% 71,88%

15 7g 68 51 31 44 61,34% 68,68% 60,71% 64,45%

T P: True Positives, T N: True Negatives, FP: False Positives, FN: False Negatives,

ACC: Accuracy, P: Precision, R: Recall, F1: F1 Score.

Table 3. Evaluation results on the emergence dataset

System Model ngrams T P T N FP FN ACC P R F1

1

SVM

1g 37 15 27 14 55,90 % 57,81 % 72,55 % 64,35 %

2 5g 36 27 15 15 67,70 % 70,58 % 70,58 % 70,58 %

3 7g 40 28 14 11 73,12 % 74,07 % 78,43 % 76,19 %

4

RF

1g 48 3 39 3 54,83 % 55,17 % 94,12 % 69,56 %

5 5g 43 20 22 8 67,70 % 66,15 % 84,30 % 74,14 %

6 7g 46 22 20 5 73,11 % 69,69 % 90,19 % 78,63 %

7

GRU

1g 44 6 36 7 53,76 % 55,00 % 86,27 % 67,17 %

8 5g 44 26 19 7 72,04 % 69,84 % 86,27 % 77,19 %

9 7g 47 26 16 4 82,45 % 74,60 % 92,15 % 82,46 %

10

MLP+AE

1g 44 7 35 7 54,80 % 55,69 % 86,27 % 67,69 %

11 5g 44 27 15 7 76,00 % 74,57 % 86,27 % 80,00 %

12 7g 48 23 19 3 76,00 % 71,60 % 91,10 % 81,30 %

13

MLP+PCA

1g 38 12 30 13 54,37 % 55,88 % 74,50 % 63,80 %

14 5g 36 23 19 15 63,44 % 65,45 % 70,58 % 67,92 %

15 7g 38 23 19 13 65,59 % 66,66 % 74,51 % 70,37 %

T P: True Positives, T N: True Negatives, FP: False Positives, FN: False Negatives,

ACC: Accuracy, P: Precision, R: Recall, F1: F1 Score.

of each algorithm. The GRU 7 grams system obtained the best results with 82,45%,

82,46% for both accuracy and F1-score respectively, which outperforms all the others

algorithms regarding the accuracy score. Nevertheless, none of the tested algorithms

differs with regard to the F1 score.

It can be assumed that one way to improve the performance of most of the studied

algorithms is to increase the size of the context. Another possibility that appears very
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promising would be to use contextualised WE models such as those produced by the

BERT model proposed by Devlin et al.[52].

5 Conclusion

This paper presents a methodology comparing five supervised machine learning algo-

rithms for the automatic identification of SNoE from raw texts. The approach uses a

pre-trained WEs model as input according to the TL principle. The WEs used as input

data for these algorithms, come from the FastText model pre-trained on a huge corpus

of generic texts in French. The FastText model was chosen because it produced better

results, compared to other equivalent WEs models, on so-called morphological rich lan-

guages such as French. The experimental results demonstrate: 1) the feasibility of our

approach for the SNoE recognition task, 2) the importance of the context on this kind of

task. Thanks to the use of the principle of transfer learning we have been able to show

that it is possible to test methodological and algorithmic choices by relying on small

corpora. Nevertheless, in order to obtain better performances, the size of our corpus

seems insufficient. As a result, an extension of our dataset is already being developed.

Given new models of WEs that seem to exceed the performance of the models we have

used, we also plan to reproduce the same type of study using this time TL principle

from a BERT model pre-trained on a French corpus like the one proposed by Le et al.

[53].

According to the obtained results, none of the presented algorithms significantly

outperforms, however, regarding the properties of each models presented in section

3.2 the GRU system seems to have a greater potential when working with the whole

sentence. For this reason we are interested to invest more in this track. As future work,

we aim to study the ability of the GRU to improve the performances on the SNoE

recognition task, in particular by providing the whole sentence as input of the system

(not only the n-grams) and thus fully use the ability of the GRU model to take into

account the sequence aspect of the data in the input. Considering the entire of our WSD

problematic it is necessary to be able to distinguish between sentences where the pivot

is used to describe a static spatial situation and those where it is used to describe a

motion (an itinerary). Then we will also work to categorise the context of SNoE in

order to detect spatial relationships and different categories of verbs (e.g., displacement,

description, perception) involved in the context.
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Supplemental Material : Hyper-parameters Settings

Here we show the hyper-parameters for each model and the range tried for the hyper-

parameters in parentheses. For GRU models, hyper-parameters include the number of
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GRU units (5,10,100,1000,100), GRU units activation function (hyperbolic tangent),

recurrent activation function (hyperbolic tangent), dropout (0.0, 0.3, 0.5, 0.8, 0.9), re-

current dropout (0.0, 0.3, 0.5, 0.8, 0.9), dense activation function (hyperbolic tangent,

sigmoid), the number of epochs for training (500, 1000, 2000), the optimiser (adam)

with learning rate (0.001). For the RF the hyper-parameters include the number of trees

in the forest (50, 60, 70, 80, 100, 200, 300, 500), the maximum depth of the tree (1,

3, 6, 12, 15, 20, 22, 25, 27, 29, 32, 34, 36, 38, 40, 43, 46, 48, 50, 60, 65, 70, 75,

80), the function to measure the quality of a split (Gini impurity, Entropy). For the

SVM the hyper-parameters include the kernel type (Polynomial, Linear, Sigmoid, Ra-

dial Basis Function), regularisation parameter (1e-3, 1e-2, 1e-1, 0.5, 1, 10, 100), the

kernel coefficient gamma (1e-3, 1e-2, 1e-1, 1, 10, 100, 1000, scale). For MLP+PCA

hyper-parameters include activation function for each layer (Exponential Linear Unit,

Rectified Linear Unit, Softplus), the output layer activation function (sigmoid), dropout

(0.0, 0.3, 0.5), PCA information, the optimiser (adam) with learning rate (0.001). For

MLP+AE the hyper-parameters are the same as in the MLP+AE except for the dropout

(0.0, 0.5, 0.9), and the dimension of the encoding layer (500).
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