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Abstract. Short-term traffic demand prediction is one of the crucial issues in in-

telligent transport systems, which has attracted attention from the taxi industry 

and Mobility-on-Demand systems. Accurate predictions enable operators to dis-

patch their vehicles in advance, satisfying both drivers and passengers. This study 

aims to predict traffic demand over the entire city based on the Graph convolu-

tional network (GCNN). Specially, we divide the study area into several non-

overlap sub-regions. Each sub-region is treated as a node, and a traffic demand 

graph is constructed. Then, we build three graph convolution networks based on 

three different weighted adjacency matrices, which represent three graph struc-

tures. Furthermore, a data-driven graph convolutional network (DDGCNN) is 

developed, which can capture the correlation between pairs of sub-regions auto-

matically. Finally, we compare our models with other prediction methods, in-

cluding three GCNNs with a normal adjacency matrix, an existing data-driven 

graph convolutional neural network, historical average, and random forest. Re-

sults show that the weighted adjacency matrix can improve the prediction perfor-

mance compared with a normal adjacency matrix. In addition, we proved that our 

DDGCNN outperforms other predictors in three aspects, i.e., performance over 

the test set, performance over the time aspect, and the performance over the spa-

tial aspect. 

Keywords: Traffic demand prediction, Time-series forecasting, Graph convolu-

tional neural network, Data-driven 

1 Introduction 

Mobility-on-Demand (MoD) systems, such as Uber, Didi, have gained great popularity 

all over the world. These systems are much convenient and flexible compared with 

traditional transport modes, such as subways and buses, by providing point-to-point 

travel with better comfort and convenience. In addition, they promote the sharing econ-

omy and enlarge the transportation capacities of the cities. One crucial operational chal-

lenge in MoD systems is the vehicle imbalances due to asymmetric vehicle demand. 

Vehicles might accumulate in some areas while being insufficient in others, which 

would impede the operations of the system. One approach to address this challenge is 

through surge pricing, which has been adopted by many MoD companies to attract 

drivers to the areas short of vehicles [1,13,21,22]. Another approach is through vehicle 
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coordination, especially in the future Autonomous Mobility-on-Demand systems, 

where fleets of autonomous vehicles provide on-demand mobility services [3–5,14]. 

Although both approaches prove to be promising, it is widely shown that their perfor-

mance (e.g., number of served requests, passenger waiting time, and profit) highly de-

pends on the demand information [18]. Therefore, forecasting short-term demand 

throughout the city is of great importance to the systems. 

Over the past few years, various data analysis models have been proposed to solve 

the short-term forecasting problem, including time-series analysis models [2,11], ma-

chine learning models [6,12], tree-based models [17]. Deep Learning (DL), a particular 

type of neural network, is a promising methodology, attracting much attention in the 

transport domain [19,20,23]. Among these DL models, a convolutional neural network 

(CNN) is defined to deal with regular grids, such as images. Since it can capture local 

spatial relations, CNN has been widely adopted in spatio-temporal prediction problems. 

Based on CNN, the whole city needs to be divided into a regular grid and is viewed as 

an image. However, the city generally has an irregular shape. In addition, traffic de-

mand in a cell can be influenced by far-away areas rather than only the adjacent cells. 

In this paper, we predict traffic demand throughout the city by improving graph con-

volutional neural network (GCNN). The study area is first divided into small non-over-

lap sub-regions, and the requests are aggregated based on a small interval (e.g., 15 

minutes) in each sub-region. In this way, we get traffic demands series in each sub-

region, which are used to train our models. The network input is the past traffic demands 

in all sub-region, the date information, while the outputs are the demand in future in-

tervals. The GCNN based model is employed because: 1) it is used to deal with graph 

data, so the study area and sub-region can be in arbitrary shape; 2) it can capture the 

relation between any two subregions by defining different graph structure. 

The improvements include two folds. First, we develop three GCNN models by em-

ploying a weighted adjacency matrix. The normal GCNN [8] defines the graph structure 

by using the adjacency matrix with only 0 and 1. 0 means no relation, while 1 denotes 

the relationship exists. However, in the real world, the influence between two sub-re-

gions are different. For example, a close sub-region can provide more information com-

pared with a distant one. Second, we develop a GCNN model with a data-driven adja-

cency matrix. Although the adjacency matrix can be easily defined, it is not trivial to 

define a suitable matrix because of different hidden correlations between sub-regions. 

The rest of the paper is organized as follows. The literature review on traffic demand 

predictions is shown in Section 2. Section 3 shows the detail of our methodology. Sec-

tion 4 introduces our data, experiments, and summarizes the main results. Section 5 

concludes the paper and proposes the next steps. 

2 Related work 

Short-term travel demand prediction is to predict the number of requests at a certain 

period within a geographic area. Short-term here refers to a short time interval, which 

is usually less than one hour. This question is increasingly important to both transpor-

tation authorities and operators [6,19]. The emerging Mobility-on-Demand platforms, 
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such as Uber, Lyft, and Didi, also have a strong motivation to obtain accurate forecast-

ing for rider demands to improve their operational efficiency. 

Various short-term demand prediction methods have been proposed, which can be 

categorized into parametric methods and nonparametric methods [9]. Parametric meth-

ods aim to use the historical data to fit a predetermined function linking the past and 

the present, where the most popular models are the Autoregressive Integrated Moving 

Average (ARIMA) models. Moreira-Matias et al. [11] proposed an ensemble frame-

work consisting of three times-series analysis models, e.g., time-varying Poisson 

model, weighted time-varying Poisson model, and ARIMA (Autoregressive integrated 

moving average) model. The predicted demand was a weighted ensemble of predictions 

from three models. Instead of fixed ensemble weights, the weights were updated based 

on the prediction performances of previous time-steps. Davis et al. [2] shortlisted a cou-

ple of time-series techniques to fit the taxi data. In addition, they developed a multi-

level clustering technique that can explore the correlation between adjacent subareas. 

These time-series methods are easy to be deployed, but they may not be able to capture 

the nonlinear relationship in traffic data. 

Nonparametric methods, on the other hand, do not assume such a predetermined 

relationship, but rather attempt to identify historical data that is similar to the prediction 

instance. These methods can deal with nonlinear and non-stationary time series of traf-

fic demand. Mukai and Yoden [12] predicted the taxi demand by a neural network, 

which adopted multi-features (e.g., demands in each region, day-of-week, and amount 

of precipitation) as the input data. Zhao et al. [24] implemented three predictors (i.e., 

Markov Predictor, LempelZiv-Welch Predictor, and Neural Network Predictor) to pre-

dict traffic demand at the building block level. In addition, the authors proved that the 

taxi demand is highly predictable by using entropy theory. Jiang et al. [6] predicted the 

demand for car-hailing service by using the least squares support machine (LS-SVM). 

Deep learning (DL), a particular type of neural network, has been shown to be a 

reliable methodology that enables researchers to model complex nonlinear relationships 

between dependent variables and features. Several DL models have been applied to 

predict the traffic demand, such as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs) [19]. Among these models, CNNs exploit the local relation 

between grid cells, which have been widely adopted to capture spatial dependencies. 

Ke et al. [7] proposed a fusion convolutional long short-term memory network (FCL-

Net), combining convolutional operations and LSTM layers to predict traffic demand. 

The explanatory variables include historical demands, travel time per unit travel dis-

tance, time-of-day, day-of-week, and weather conditions. To rank the importance of the 

explanatory variables, the authors employed a tailored spatially aggregated random for-

est. Yao et al. [20] proposed a Deep Multi-View Spatial-Temporal Network (DMVST-

Net) framework to predict demand. In this framework, CNN is used to capture the fea-

tures from the spatially nearby sub-regions. 

However, CNN still has limitations. CNN is defined to deal with the data with reg-

ular grids, such as images, but the study area is usually in an irregular shape. Data 

preprocessing work is necessary to apply CNN in transportation [10]. A general ap-

proach is to fill the outside study area with zeros, which would, nevertheless, result in 

unnecessary storage. In addition, CNN only captures the local dependencies, but far-
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away areas could influence traffic demand in a cell. Graph convolutional network 

(GCNN) is an extension of CNN, which can deal with the data on an irregular domain 

[8]. By using different graph structures, GCNN can capture the relationship between 

different sub-regions. Therefore, we adopt GCNN to predict traffic demand. 

3 Methodology 

In this section, we first give some critical definitions related to the question. Then, we 

introduce the normal Graph convolutional neural network, in which we introduce how 

to construct the weighted adjacency matrix. Finally, a data-driven graph neural network 

is developed. 

3.1 Problem Definition 

Traffic request. 

Traffic request describes when and where passengers need a vehicle, which is expressed 

as a tuple (id,t, lng, lat), where id is the identification of an order; t describes when 

passengers need the vehicle; lng and lat represent where passengers need a vehicle. The 

vehicle can be car-sharing vehicles, taxis, etc. In this study, without loss of generality, 

we use taxi data as an example in the experiment section. 

Traffic demand. 

Traffic demand represents the number of traffic requests in a sub-region at a specific 

time interval. For a study area, all the sub-regions are non-overlapping, which are de-

noted as (l1,...,lN). The time intervals are denoted as (I1,...,IT). The traffic demand in area 

i at interval t is denoted as di,t. 

Short-term traffic demand prediction problem. 

The demand prediction problem aims to predict the number of requests at a specific 

future period throughout the whole city, given the historical demands and some context 

features. 

, 1 , , , 1 ,[ ] (( ,..., , ), ),...,i t i t T i t n i t i t contextd f d d d Xd+ + − −= (1) 

where n is the length of historical time series, i is the identification of subregion, Xcontext 

represents context features, and T is the length of the time series needed to be predicted. 

3.2 Graph Convolutional Neural Network 

A graph convolutional neural network (GCNN) is a type of neural network that per-

forms convolutional operations on graphs. We divide the whole city into several sub-

regions and model the traffic demand as a graph ( ),G V E= , where each vertex i repre-

sents a sub-region, characterized by a feature vector ix , consisting of 0d  features. Each 
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edge represents the connection between pairs of vertices. The graph structure is de-

scribed as an N N  adjacency matrix A, whose elements Aij encode the connection 

degree between the signals at two vertices.  

We aim to build a GCNN model to predict traffic demand for the next period. Sup-

pose the GCNN model has several layers from the input to the output. For each layer l, 

the input is a feature vector [ , 1... ]l l

iH x i N= = , given as the previous layer l-1, where
ll N d

ix = represents the features for each node i and 
ld  is the number of features for 

the current layer. Notice that the number of features per-vertex can be different in lay-

ers. The output vector 
1lH +

includes the traffic demand information in the next time 

period at each sub-region. Specifically, when describing a graph with adjacency matrix 

A, the layer-wise propagation rule can be defined as a nonlinear function: 

1 ( )l l

AH f H+ = (2) 

In this way, features for each node could become more abstract after each layer. Various 

types of GCNNs can be obtained by defining propagation rules in Eq. (2). 

In this paper, we adopt a two-layer GCNN neural network and the following layer-

wise propagation rule as [8]: 

1 1

1 2 2( )l l lH D AD H W
− −

+ = (3) 

where NA A I= + is the adjacency matrix of a graph with added self-connections; IN is 

the identity matrix; D is a diagonal matrix with 
j

D A
ii ij
=  ; lW  is the trainable weight 

matrix; ( )  is an activation function, such as ReLU, Tanh. 

Normal adjacency matrix. 

The adjacency matrix A represents the structure of the graph, which need to be defined 

in advance. The definition of such a matrix can be based on different rules [10]. This 

section proposes three data matrices to quantify the correlations between sub-regions. 

Spatial distance matrix. 

According to the first law of geography [16], near things are more related than distant 

things. A simple way to encoder the correlation is based on their spatial spherical dis-

tance, which is calculated by spherical distance (the shortest distance along with the 

Earth) in this study. Elements of Spatial distance matrix (SD) are then defined as: 

( )  _ ,  ij i jSD Spherical dis l l= (4) 

where li and lj are the central locations of sub-region i and sub-region j. Each entry of 

ASD is set to 0 if ij SDSD  , otherwise 1
ijSDA = . 

Demand correlation matrix. 
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The Demand Correlation matrix (DC) captures the correlations between sub-regions 

by employing historical demands. Each element is calculated by the Pearson Correla-

tion Coefficient (PCC) based on the demand series between sub-region i and sub-region 

j. 

( ) ,  ij i jDC PCC h h= (5) 

where hi and hj are the traffic demand series for sub-region i and sub-region j. A binary 

adjacency matrix is formed such that 1
ijDCA =  if ij DCDC  , otherwise 0

ijDCA = . 

DC is a pre-defined threshold.

Demand euclidean matrix. 

The demand euclidean matrix also measures the relationship by using historical de-

mands. Instead of using PCC, we use mean euclidean distance to represent the absolute 

closeness between pairs of sub-regions. 

2

1

( )
T

it jt

t

ij

h h

DE
T

=

−

=


(6) 

where T is the length of the demand series. 
ijDEA  is set to 1 if ij DEDE  , otherwise

0
ijDEA = . 

Weighted adjacency matrix. 

The above mentioned three adjacency matrices contain only zeros and ones, which only 

represent whether a relationship exists between two sub-regions,  and the related sub-

regions have the same effects for the target sub-region. However, in the real-world, a 

sub-region is related to various sub-regions in different weights. For example, for a 

given sub-region i, the adjacent sub-region j should have a more substantial influence 

compared with a farther sub-region. Therefore, we build three weighted adjacency ma-

trix based on the above three rules. 

For the DC matrix, a higher value means a better relationship. A weighted adjacency 

matrix is simply built as: 

0,   if  

h ot erwise ij

ij DC

WDC

ij

DC
A

DC


= 


(7) 

However, for SD and DE matrix, since a small number represents a good relation-

ship, we build the corresponding adjacency matrix by using the reciprocal. To avoid 

zero denominators, we first replace zero elements with the minimum value of the re-

maining non-zero elements. Then, the two weighted adjacency matrices are denoted as: 
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2

0,          

    otherwi e

if  

1
sij

ij

WSC

i

S

j

DSD

A

SD




= 



(8) 

2

0,          

    otherwi e

if  

1
sij

ij

WDE

i

D

j

EDE

A

DE




= 



(9) 

3.3 GCNN with data-driven adjacency matrix 

The hidden correlations between the two sub-regions are heterogeneous. Thus, the pre-

definition of the adjacency matrix A is not trivial. Hence, it is difficult to encode them 

using just a matrix such as the SD, DC, and DE matrix. The intuitive idea is to learn the 

filter from the data. Let
1 1

2 2Â D AD
−−

= , Lin et al. [10] replaced Equ. (3) as: 

1 ˆ( )l l lH AH W+ = (10) 

However, Equ. (10) has restrictions for Â . 1) It considers Â  as a symmetrical matrix, 

which means pairs of sub-regions have the same and mutual influence. 2) Â  only has

positive elements, which only allow the positive influence between pairs of sub-re-

gions. In this paper, we use a similar form as, 

ˇ
1 ( )l l lH A H W+ = (11) 

where 
ˇ

A is an adjacency-like matrix, which is learned from data as Wl. Each entry in 
ˇ

A could be negative, positive, and zero. 

4 Experiments and results 

4.1 Experiment setup 

The data utilized in this study are from TIL between June 2015 to June 2016 [15]. Each 

record includes pickup time, dropoff time, pickup longitude, pickup latitude, dropoff 

longitude, dropoff latitude. Since over 80% of these records have origins and destina-

tions falling within the Manhattan island, we only focus on taxi data within Manhattan 

island for demand prediction. This study area is furthermore divided into grid uni-

formly, where each cell refers to a sub-region. The edge of the cell if 500 meters. In 

addition, these pickups are aggregated in a 15 minutes time interval. Furthermore, we 

only consider only regions where at least has one request per day on average had been 

made. After eliminating the regions that do not satisfy our limit, 269 regions were left. 

In the experiment, the first 11 months' of the data sets (between June 2015 to April 

2016) are used as the training set, the following month (May 2016) is used as the 
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validation set, and the last month (June 2016) is set as the test set. The DC and DE 

matrices are built from the training set. The SD is calculated based on the center point 

of sub-regions. 

To consider the historical demands, we select the past eight intervals' demands as 

features for each sub-region, which are normalized to [0, 1]. In addition, the features 

also include day of week and hour, which are categorical variables and encoded using 

Embedding methods. Based on section 3.2, we build six types of GCNN models based 

on the known adjacency matrix, which are labeled as GSdEa, GPdEa, GEdEa, GSdUa, 

GPdUa, GEdUa, where Sd, Pd, and Ed means spatial distance, demand correlation, and 

demand euclidean based adjacency matrix respectively. Ea and Ua denote normal ad-

jacency and weighted adjacency matrix, respectively. In addition, we build our data-

driven GCNN, according to section 3.3, which is denoted as DSu. We also select an-

other data-driven GCNN for comparison, which is based on [10], denoted as DSp. 

4.2 Performance Metrics 

Here, we use Symmetric Mean Absolute Percentage Error (sMAPE) and Root Mean 

Square Error (RMSE) to examine the performance of GCNN and other comparison 

methods [19]. From the statistic perspective, RMSE shows the absolute difference be-

tween the predicted value and the real value, while the sMAPE describes a percentile 

error. Both metrics are expressed as 

1

| |1 M
i i

i i i

d d
sMAPE

M d d c=

−
=

+ +
 (12) 

2

1

1
( )

M

i i

i

RMSE d d
M =

= − (13) 

where di is the real demand, id is the predicted demand, and M is the length of indi-

vidual demand. c in sMAPE is a small number (here, we make c=1), which is to avoid 

zero in the denominator. By using a different set of individual demands, we can get the 

prediction performance in various sub-regions and periods. 

4.3 Performance between GCNN-based models 

In this section, we compare different GCNN-based models, i.e., six GCNN models with 

a given adjacency matrix and two data-driven GCNN models. The results are listed in 

Table 1. The RMSE and sMAPE are calculated for the same test set. In the first block, 

the first three rows show the results of GCNN models with normal adjacency matrices, 

followed by the corresponding GCNN models with given weighted adjacency matrices. 

The second block gives results for two data driven GCNN models. 

We can also get some other conclusions. 1) The first block shows GSdUa, GPdUa, 

and GEdUa get a lower RMSE than GSdEa, GPdEa, and GEdEa, respectively. In addi-

tion, although GPdEa and GPdUa get a similar sMAPE. GSdUa and GPdUa get a much 
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better performance in terms of sMAPE. It means that the weighted adjacency matrices 

can improve the performance of normal adjacency matrices. 2) The improvement of the 

weighted adjacency matrix depends on how to define the relationship between sub-

regions. 3) Although weighted adjacency can enable GCNN to get a better a good per-

formance, DSp model obtains the best performance under RMSE and sMAPE. 

Table 1. Comparison between GCNN-based models on test set 

Model RMSE sMAPE 

GSdEa 23.549 0.420 

GPdEa 12.970 0.203 

GEdEa 23.538 0.419 

GSdUa 6.765 0.169 

GPdUa 12.813 0.212 

GEdUa 6.814 0.158 

DSp 6.167 0.153 

DSu 5.880 0.143 

4.4 Methods for Comparison. 

In addition, we also compare GCNN models with another two prediction models, the 

Historical Average (HV) and Random Forest (RF). 

Historical Average. 

This approach predicts future demand as the average value of the same period and 

the same sub-regions during the past weeks. For example, if it is 8:00 am on Monday, 

the predicted value would be the average of demands at 8:00 am in the past 5 Mondays. 

Random Forest. 

Random forest (RF) is a powerful ensemble learning model, which has been widely 

used in many regression and regression tasks. The method constructs a handful of de-

cision trees at the training process, and output is the mean of predictions of all the in-

dividual trees. Compared to other ensemble strategies, the particularity of random for-

ests lies in the process by which the trees are built. Moreover, the obtained trees are not 

pruned. These models can also be used for estimating variable importance. They are 

reasonably fast to obtain and can be easily parallelized if more speed is required.  

We first report the prediction performance over the whole test set. Then, we show 

the prediction performance over the entire city. Finally, we show the performance at all 

the sub-regions. 
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Prediction performance Over test set. 

In this section, the three models are trained using the same training set, and the in-

ference results are based on the same test set. Instead of only showing the performance 

based on the whole test, we test the performance for the demand in various sizes, which 

is reported in Figure 1. The x-axis is quantile, which means only the elements that are 

higher the given quantile are in the test set. The two y-axises are RMSE or sMAPE. For 

example, if x is 0.5, we get the partial test set where all the elements are higher than 0.5 

quantiles. Then, the RMSE and sMAPE are calculated based on the partial test set and 

the corresponding predicted values. 

We can easily find that when real demand increases, the RMSE also becomes larger 

while sMAPE decreases. The DSu can always get the best performance under RMSE 

(Figure 1a). In terms of sMAPE (see Figure 1b), although DSu does not get the best 

performance for the whole data set, it gives a more accurate prediction when the de-

mand is high. In fact, the demand intensity area needs much more attention to vehicle 

dispatching.  Thus, predicting demand accurately in high demand set is more useful. 

(a) RMSE (b) sMAPE

Fig. 1. Performance comparison over the test set 

Prediction results Over the whole day. 

Figure 2 reports the prediction performance over the entire city between the three pre-

dictors. All methods share some common patterns in both metrics. For instance, RMSE 

reaches its minimum values at about 4 am and maximum values at about 11 pm. sMAPE 

gets the largest value at about 3 am. In terms of RMSE, DSu gets the best performance 

at most times, but RF gets a better performance under sMAPE. One possible reason is 

that the test set contains more low demand value throughout the day. 
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(a) RMSE (b) sMAPE

Fig. 2. Performance comparison over the test set 

Performance over the area. 

Figure 3 reports the prediction performance over the space. In Figure 3a, each cell rep-

resents the average daily demand in the test set, where red color means high demand, 

and green color means low demand. The imbalance of traffic demand can be easily 

observed. The high demand cells are mainly distributed in the southwestern part of 

Manhattan. In Figure 3b and 3c, we represent each cell with a method that gets the best 

performance according to RMSE and sMAPE, respectively. The two sub-figures reflect 

that DSu gets the best performance in most sub-regions. In the 269 sub-regions, 155 

sub-regions get the best performance under RMSE, and 145 sub-regions get the lowest 

sMAPE. In addition, most of the cells in DSu are mainly distributed in the high demand 

area. The historical average (HV) also gets the best performance in several sub-regions, 

but all of these cells are concentrated in the low demand area. 
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(a) Daily demand (b) RMSE (c) sMAPE

Fig. 3. Performance comparison over the test set 

5 Conclusions 

In this study, we propose a data-driven graph convolutional neural network (DDGCNN) 

for short-term traffic demand predicting. In addition, three weighted adjacency matrix 

is provided for the normal Graph convolutional neural network. By learning from his-

torical demand patterns, the proposed models can make traffic demand the entire city. 

To evaluate the proposed models, the proposed models are compared with another four 

graph convolutional neural networks and two typical prediction methods by using NYC 

data. Several findings can be drawn based on the results. 1) The weighted adjacency 

matrix enables the GCNN to get better performance compared with the normal adja-

cency matrix. The degree of improvement differs in the construction of matrices. 2) 

The proposed model outperforms the other predictors, especially for high demand. 3) 

Our DDGCNN gets the best performance at a different time and most of the sub-re-

gions. 

Although our methods get excellent performance, they still suffer some limitations. 

The limitations and the possible improvements are summarized as follows. 1) In our 

method, we only consider historical demand information. It is not enough to describe 

all the influence factors. In future research, the work will consider more information to 

the input, such as weather, land use, and social events. 2) GCNN is good at learning 

and utilizing spatial dependencies. Time factors are also essential influence factors for 

traffic demand prediction. In the next step, the recurrent neural network is another type 

of deep learning model to deal with time-series data, which is worthy of fusing into the 
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model to consider spatial dependence and time dependence simultaneously. 3) Based 

on our results, we can find that no one method can get the best performance in all the 

periods and sub-regions.  It is worth to study how to create an ensemble model and get 

the best performance. 4) Finally, it is useful to study how to organize the vehicles in 

the entire city according to the predicted demand. 
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